Refine Your Search

Topic

Author

Search Results

Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

An Erosion Aggressiveness Index (EAI) Based on Pressure Load Estimation Due to Bubble Collapse in Cavitating Flows Within the RANS Solvers

2015-09-06
2015-24-2465
Despite numerous research efforts, there is no reliable and widely accepted tool for the prediction of erosion prone material surfaces due to collapse of cavitation bubbles. In the present paper an Erosion Aggressiveness Index (EAI) is proposed, based on the pressure loads which develop on the material surface and the material yield stress. EAI depends on parameters of the liquid quality and includes the fourth power of the maximum bubble radius and the bubble size number density distribution. Both the newly proposed EAI and the Cavitation Aggressiveness Index (CAI), which has been previously proposed by the authors based on the total derivative of pressure at locations of bubble collapse (DP/Dt>0, Dα/Dt<0), are computed for a cavitating flow orifice, for which experimental and numerical results on material erosion have been published. The predicted surface area prone to cavitation damage, as shown by the CAI and EAI indexes, is correlated with the experiments.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Implementation of the Time Variant Discrete Fourier Transform as a Real-Time Order Tracking Method

2007-05-15
2007-01-2213
The Time Variant Discrete Fourier Transform was implemented as a real-time order tracking method using developed software and commercially available hardware. The time variant discrete Fourier transform (TVDFT) with the application of the orthogonality compensation matrix allows multiple tachometers to be tracked with close and/or crossing orders to be separated in real-time. Signal generators were used to create controlled experimental data sets to simulate tachometers and response channels. Computation timing was evaluated for the data collection procedure and each of the data processing steps to determine how each part of the process affects overall performance. Many difficulties are associated with a real-time data collection and analysis tool and it becomes apparent that an understanding of each component in the system is required to determine where time consuming computation is located.
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

A Comparison of Time-Averaged Piston Temperatures and Surface Heat Flux Between a Direct-Fuel Injected and Carbureted Two-Stroke Engine

1998-02-23
980763
Time-averaged temperatures at critical locations on the piston of a direct-fuel injected, two-stroke, 388 cm3, research engine were measured using an infrared telemetry device. The piston temperatures were compared to data [7] of a carbureted version of the two-stroke engine, that was operated at comparable conditions. All temperatures were obtained at wide open throttle, and varying engine speeds (2000-4500 rpm, at 500 rpm intervals). The temperatures were measured in a configuration that allowed for axial heat flux to be determined through the piston. The heat flux was compared to carbureted data [8] obtained using measured piston temperatures as boundary conditions for a computer model, and solving for the heat flux. The direct-fuel-injected piston temperatures and heat fluxes were significantly higher than the carbureted piston. On the exhaust side of the piston, the direct-fuel injected piston temperatures ranged from 33-73 °C higher than the conventional carbureted piston.
Technical Paper

Global Optimization of a Two-Pulse Fuel Injection Strategy for a Diesel Engine Using Interpolation and a Gradient-Based Method

2007-04-16
2007-01-0248
A global optimization method has been developed for an engine simulation code and utilized in the search of optimal fuel injection strategies. This method uses a Lagrange interpolation function which interpolates engine output data generated at the vertices and the intermediate points of the input parameters. This interpolation function is then used to find a global minimum over the entire parameter set, which in turn becomes the starting point of a CFD-based optimization. The CFD optimization is based on a steepest descent method with an adaptive cost function, where the line searches are performed with a fast-converging backtracking algorithm. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space.
Technical Paper

A Study of the Filtration and Oxidation Characteristics of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter

2007-04-16
2007-01-1123
An experimental and modeling study was conducted to study the passive regeneration of a catalyzed particulate filter (CPF) by the oxidation of particulate matter (PM) via thermal and Nitrogen dioxide/temperature-assisted means. Emissions data in the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR and a diesel oxidation catalyst (DOC) - catalyzed particulate filter (CPF) in the exhaust system was measured and used for this study. A series of experiments was conducted to evaluate the performance of the DOC, CPF and DOC+CPF configurations at various engine speeds and loads.
Technical Paper

Experimental Studies of an Advanced Ceramic Diesel Particulate Filter

2008-04-14
2008-01-0622
A Cummins ISB 5.9 liter medium-duty engine with cooled EGR has been used to study an early extrusion of an advanced ceramic uncatalyzed diesel particulate filter (DPF). Data for the advanced ceramic material (ACM) and an uncatalyzed cordierite filter of similar dimensions are presented. Pressure drop data as a function of mass loadings (0, 4, and 6 grams of particulate matter (PM) per liter of filter volume) for various flow rate/temperature combinations (0.115 - 0.187 kg/sec and 240 - 375 °C) based upon loads of 15, 25, 40 and 60% of full engine load (684 N-m) at 2300 rpm are presented. The data obtained from these experiments were used to calibrate the MTU 1-D 2-Layer computer model developed previously at MTU. Clean wall permeability determined from the model calibration for the ACM was 5.0e-13 m2 as compared to 3.0e-13 m2 for cordierite.
Technical Paper

Development of a 1-D CPF Model to Simulate Active Regeneration of a Diesel Particulate Filter

2009-04-20
2009-01-1283
A quasi-steady 1-dimensional computer model of a catalyzed particulate filter (CPF) capable of simulating active regeneration of the CPF via diesel fuel injection upstream of a diesel oxidation catalyst (DOC) or other means to increase the exhaust gas temperature has been developed. This model is capable of predicting gaseous species concentrations (HC's, CO, NO and NO2) and exhaust gas temperatures within and after the CPF, for given input values of gaseous species and PM concentrations before the CPF and other inlet variables such as time-varying temperature of the exhaust gas at the inlet of the CPF and volumetric flow rate of exhaust gas.
Technical Paper

Material Damping Properties: A Comparison of Laboratory Test Methods and the Relationship to In-Vehicle Performance

2001-04-30
2001-01-1466
This paper presents the damping effectiveness of free-layer damping materials through standard Oberst bar testing, solid plate excitation (RTC3) testing, and prediction through numerical schemes. The main objective is to compare damping results from various industry test methods to performance in an automotive body structure. Existing literature on laboratory and vehicle testing of free-layer viscoelastic damping materials has received significant attention in recent history. This has created considerable confusion regarding the appropriateness of different test methods to measure material properties for damping materials/treatments used in vehicles. The ability to use the material properties calculated in these tests in vehicle CAE models has not been extensively examined. Existing literature regarding theory and testing for different industry standard damping measurement techniques is discussed.
Technical Paper

Induction Hardening Simulation of Steel and Cast Iron Components

2002-03-19
2002-01-1557
The induction hardening process involves a complex interaction of electromagnetic heating, rapid cooling, metallurgical phase transformations, and mechanical behavior. Many factors including induction coil design, power, frequency, scanning velocity, workpiece geometry, material chemistry, and quench severity determine a process outcome. This paper demonstrates an effective application of a numerical analysis tool for understanding of induction hardening. First, an overview of the Caterpillar induction simulation tool is briefly discussed. Then, several important features of the model development are examined. Finally, two examples illustrating the use of the computer simulation tool for solving induction-hardening problems related to cracking and distortion are presented. These examples demonstrate the tool's ability to simulate changes in process parameters and latitude of modeling steel or cast iron.
Technical Paper

A One-Dimensional Computational Model for Studying the Filtration and Regeneration Characteristics of a Catalyzed Wall-Flow Diesel Particulate Filter

2003-03-03
2003-01-0841
A one-dimensional, two layer computational model was developed to predict the behavior of a clean and particulate-loaded catalyzed wall-flow diesel particulate filter (CPF). The model included the mechanisms of particle deposition inside the CPF porous wall and on the CPF wall surface, the exhaust flow field and temperature field inside the CPF, as well as the particulate catalytic oxidation mechanisms accounting for the catalyst-assisted particulate oxidation by the catalytic coating in addition to the conventional particulate thermal oxidation. The paper also develops the methodology for calibrating and validating the model with experimental data. Steady state loading experiments were performed to calibrate and validate the model.
Technical Paper

The Dimensionless Correlation of Airflow for Vehicle Engine Cooling Systems

1991-02-01
910643
An analysis of vehicle engine cooling airflow by means of a one-dimensional, transient, compressible flow model was carried out and revealed that similarity theory could be applied to investigate the variation of the airflow with ambient and operating conditions. It was recognized that for a given vehicle engine cooling system, the cooling airflow behavior could be explained using several dimensionless parameters that involve the vehicle speed, fan speed, heat transfer rate through the radiator, ambient temperature and pressure, and the system characteristic dimension. Using the flow resistance and fan characteristics measured from a prototype cooling system and the computer simulation for the one-dimensional compressible flow model, a quantitative correlation of non-dimensional mass flow rate to three dimensionless parameters for a prototype heavy-duty truck was established. The results are presented in charts, tables, and formulas.
Technical Paper

Easily Verifiable Adaptive Sliding Mode Controller Design with Application to Automotive Engines

2016-04-05
2016-01-0629
Verification and validation (V&V) are essential stages in the design cycle of industrial controllers to remove the gap between the designed and implemented controller. In this study, a model-based adaptive methodology is proposed to enable easily verifiable controller design based on the formulation of a sliding mode controller (SMC). The proposed adaptive SMC improves the controller robustness against major implementation imprecisions including sampling and quantization. The application of the proposed technique is demonstrated on the engine cold start emission control problem in a mid-size passenger car. The cold start controller is first designed in a single-input single-output (SISO) structure with three separate sliding surfaces, and then is redesigned based on a multiinput multi-output (MIMO) SMC design technique using nonlinear balanced realization.
Technical Paper

A New Validation of Spray Penetration Models for Modern Heavy Duty Diesel Fuel Injectors

2017-03-28
2017-01-0826
The performance of five positive k-factor injector tips has been assessed in this work by analyzing a comprehensive set of injected mass, momentum, and spray measurements. Using high speed shadowgraphs of the injected diesel plumes, the sensitivities of measured vapor penetration and dispersion to injection pressure (100-250MPa) and ambient density (20-52 kg/m3) have been compared with the Naber-Siebers empirical spray model to gain understanding of second order effects of orifice diameter. Varying in size from 137 to 353μm, the orifice diameters and corresponding injector tips are appropriate for a relatively wide range of engine cylinder sizes (from 0.5 to 5L). In this regime, decreasing the orifice exit diameter was found to reduce spray penetration sensitivity to differential injection pressure. The cone angle and k-factored orifice exit diameter were found to be uncorrelated.
Technical Paper

Real-Time Closed-Loop Control of a Light-Duty RCCI Engine During Transient Operations

2017-03-28
2017-01-0767
Real-time control of Reactivity Controlled Compression Ignition (RCCI) during engine load and speed transient operation is challenging, since RCCI combustion phasing depends on nonlinear thermo-kinetic reactions that are controlled by dual-fuel reactivity gradients. This paper discusses the design and implementation of a real-time closed-loop combustion controller to maintain optimum combustion phasing during RCCI transient operations. New algorithms for real-time in-cylinder pressure analysis and combustion phasing calculations are developed and embedded on a Field Programmable Gate Array (FPGA) to compute RCCI combustion and performance metrics on cycle-by-cycle basis. This cycle-by-cycle data is then used as a feedback to the combustion controller, which is implemented on a real-time processor. A computationally efficient algorithm is introduced for detecting Start of Combustion (SOC) for the High Temperature Heat Release (HTHR) or main-stage heat release.
Technical Paper

A 2-D Computational Model Describing the Flow and Filtration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980545
A 2-D computational model was developed to describe the flow and filtration processes, in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state trap loading, as well as the transient behavior of the flow and filtration processes. The theoretical model includes the effect of a copper fuel additive on trap loading and transient operation. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations. The filtration theory incorporated in the time dependent numerical code included the diffusion, inertia, and direct interception mechanisms. Based on a measured upstream particle size distribution, using the filtration theory, the downstream particle size distribution was calculated. The theoretical filtration efficiency, based on particle size distribution, agreed very well (within 1%) with experimental data for a number of different cases.
X