Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Effects of Natural Aging on Fleet and Durability Vehicle Engine Mounts from a Dynamic Characterization Perspective

2001-04-30
2001-01-1449
Elastomers are traditionally designed for use in applications that require specific mechanical properties. Unfortunately, these properties change with respect to many different variables including heat, light, fatigue, oxygen, ozone, and the catalytic effects of trace elements. When elastomeric mounts are designed for NVH use in vehicles, they are designed to isolate specific unwanted frequencies. As the elastomers age however, the desired elastomeric properties may have changed with time. This study looks at the variability seen in new vehicle engine mounts and how the dynamic properties change with respect to miles accumulated on fleet and durability test vehicles.
Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

Diesel Engine Electric Turbo Compound Technology

2003-06-23
2003-01-2294
A cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar is aimed at demonstrating electric turbo compound technology on a Class 8 truck engine. The goal is to demonstrate the level of fuel efficiency improvement attainable with an electric turbocompound system. The system consists of a turbocharger with an electric motor/generator integrated into the turbo shaft. The generator extracts surplus power at the turbine, and the electricity it produces is used to run a motor mounted on the engine crankshaft, recovering otherwise wasted energy in the exhaust gases. The electric turbocompound system also provides more control flexibility in that the amount of power extracted can be varied. This allows for control of engine boost and thus air/fuel ratio. The paper presents the status of development of an electric turbocompound system for a Caterpillar heavy-duty on-highway truck engine.
Technical Paper

A Bench Test Procedure for Evaluating the Cylinder Liner Pitting Protection Performance of Engine Coolant Additives for Heavy Duty Diesel Engine Applications

1996-02-01
960879
Evaluations of the liner pitting protection performance provided by engine coolant corrosion inhibitors and supplemental coolant additives have presented many problems. Current practice involves the use of full scale engine tests to show that engine coolant inhibitors provide sufficient liner pitting protection. These are too time-consuming and expensive to use as the basis for industry-wide specifications. Ultrasonic vibratory test rigs have been used for screening purposes in individual labs, but these have suffered from poor reproducibility and insufficient additive differentiation. A new test procedure has been developed that reduces these problems. The new procedure compares candidate formulations against a good and bad reference fluid to reduce the concern for problems with calibration and equipment variability. Cast iron test coupons with well-defined microstructure and processing requirements significantly reduce test variability.
Technical Paper

Advanced Computational Methods for Predicting Flow Losses in Intake Regions of Diesel Engines

1997-02-24
970639
A computational methodology has been developed for loss prediction in intake regions of internal combustion engines. The methodology consists of a hierarchy of four major tasks: (1) proper computational modeling of flow physics; (2) exact geometry and high quality and generation; (3) discretization schemes for low numerical viscosity; and (4) higher order turbulence modeling. Only when these four tasks are dealt with properly will a computational simulation yield consistently accurate results. This methodology, which is has been successfully tested and validated against benchmark quality data for a wide variety of complex 2-D and 3-D laminar and turbulent flow situations, is applied here to a loss prediction problem from industry. Total pressure losses in the intake region (inlet duct, manifold, plenum, ports, valves, and cylinder) of a Caterpillar diesel engine are predicted computationally and compared to experimental data.
Technical Paper

Application of Digital, Pulse - Width - Modulated, Sonic Flow Injectors for Gaseous Fuels

1995-08-01
951912
Sonic flow, pulse-width-modulated electronic fuel injectors for gaseous fuels provide precise, stable and reliable service for over 1 billion cycles. Techniques for precision flow calibration are described along with dynamic response characteristics. Application techniques including pressure regulation, filtration and procedures for adjusting flow calibration for changes in gas pressure, temperature and composition are presented. Applications include single point (throttle body or mixer), multi-point constant flow and multipoint sequential strategies. Durability testing in parallel with a utility pipeline regulator fully conserves power and gaseous fuel in a simple, low cost, multiple injector test bank.
Technical Paper

Performance of Organic Acid Based Coolants in Heavy Duty Applications

1996-02-01
960644
Coolant formulations based on organic acid corrosion inhibitor technology have been tested in over 180 heavy duty engines for a total of more than 50 million kilometers. This testing has been used to document long life coolant performance in various engine types from four major engine manufacturers. Inspections of engines using organic acid based coolant (with no supplemental coolant additive) for up to 610,000 kilometers showed excellent protection of metal engine components. Improved protection was observed against cylinder liner, water pump, and aluminum spacer deck corrosion. In addition, data accumulated from this testing were used to develop depletion rate curves for long life coolant corrosion inhibitors, including tolyltriazole and nitrite. Nitrite was observed to deplete less rapidly in long life coolants than in conventional formulations.
Technical Paper

Development of Plasma Spray Coated Cylinder Liners

1996-02-01
960048
Improved fuel economy and reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, such insulation will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150°C to over 300°C. Since existing ring/liner materials cannot withstand these higher operating temperatures alternatives are needed for this critical tribological interface. This paper describes the development of a cost effective ID grinding technique for machining the bores of plasma sprayed diesel engine cylinder liners.
Technical Paper

A Comparison of Time-Averaged Piston Temperatures and Surface Heat Flux Between a Direct-Fuel Injected and Carbureted Two-Stroke Engine

1998-02-23
980763
Time-averaged temperatures at critical locations on the piston of a direct-fuel injected, two-stroke, 388 cm3, research engine were measured using an infrared telemetry device. The piston temperatures were compared to data [7] of a carbureted version of the two-stroke engine, that was operated at comparable conditions. All temperatures were obtained at wide open throttle, and varying engine speeds (2000-4500 rpm, at 500 rpm intervals). The temperatures were measured in a configuration that allowed for axial heat flux to be determined through the piston. The heat flux was compared to carbureted data [8] obtained using measured piston temperatures as boundary conditions for a computer model, and solving for the heat flux. The direct-fuel-injected piston temperatures and heat fluxes were significantly higher than the carbureted piston. On the exhaust side of the piston, the direct-fuel injected piston temperatures ranged from 33-73 °C higher than the conventional carbureted piston.
Technical Paper

Development of a Fiber Reinforced Aluminum Piston for Heavy Duty Diesel Engines

1994-03-01
940584
This paper discusses a joint customer-supplier program intended to further develop the ability to design and apply aluminum alloy pistons selectively reinforced with ceramic fibers for heavy duty diesel engines. The approach begins with a comprehensive mechanical properties evaluation of base and reinforced material. The results demonstrated significant fatigue strength improvement due to fiber reinforcement, specially at temperatures greater than 300°C. A simplified numerical analysis is performed to predict the temperature and fatigue factor values at the combustion bowl area for conventional and reinforced aluminum piston designs for a 6.6 liter engine. It concludes that reinforced piston have a life expectation longer than conventional aluminum piston. Structural engine tests under severe conditions of specific power and peak cylinder pressure were used to confirm the results of the cyclic properties evaluation and numerical analysis.
Technical Paper

The Theoretical Development of Vehicle Engine Cooling Airflow Models Using Incompressible Flow Methods

1991-02-01
910644
A one-dimensional incompressible flow model covering the mechanisms involved in the airflow through an automotive radiator-shroud-fan system with no heat transfer was developed. An analytical expression to approximate the experimentally determined fan performance characteristics was used in conjunction with an analytical approach for this simplified cooling airflow model, and the solution is discussed with illustrations. A major result of this model is a closed form equation relating the transient velocity of the air to the vehicle speed, pressure rise characteristics and speed of the fan, as well as the dimensions and resistance of the radiator. This provides a basis for calculating cooling airflow rate under various conditions. The results of the incompressible flow analysis were further compared with the computational results obtained with a previously developed one-dimensional, transient, compressible flow model.
Technical Paper

The Dimensionless Correlation of Airflow for Vehicle Engine Cooling Systems

1991-02-01
910643
An analysis of vehicle engine cooling airflow by means of a one-dimensional, transient, compressible flow model was carried out and revealed that similarity theory could be applied to investigate the variation of the airflow with ambient and operating conditions. It was recognized that for a given vehicle engine cooling system, the cooling airflow behavior could be explained using several dimensionless parameters that involve the vehicle speed, fan speed, heat transfer rate through the radiator, ambient temperature and pressure, and the system characteristic dimension. Using the flow resistance and fan characteristics measured from a prototype cooling system and the computer simulation for the one-dimensional compressible flow model, a quantitative correlation of non-dimensional mass flow rate to three dimensionless parameters for a prototype heavy-duty truck was established. The results are presented in charts, tables, and formulas.
Technical Paper

All Electronic Dual Fuel Injection System for the Belarus D-144 Diesel Engine

1990-08-01
901502
Through the joint efforts of BKM, SPI, AFS and Belarus, an advanced, all- electronic dual fuel system has been developed for retrofit applications on the Belarus D-144, four-cylinder, 4.15 liter, 44.7 KW diesel engine. The system features all electronic control on both full diesel or up to 90 % gas with automatic and instant changeover capability. The existing mechanical diesel injection system was replaced with an all electronic, hydraulically actuated, diesel injection system coupled with timed multi-point electronic injection for the gas system. The control strategy does not utilize inlet throttling typically used on gas fueled engines. The effectiveness of this simplified control system is assumed to be the result of a degree of charge stratification. The D-144 engine is utilized in a wide variety of industrial, farm and highway applications. Special application requirements can be accommodated by programming the EPROM control chip.
Technical Paper

Effects of Fuel Injection on Diesel Combustion

1988-02-01
880299
Additional data has been analyzed on the effect of engine size on thermal efficiency. The comparison has been expanded to show the trends separately for engines developed by several different manufacturers. The data confirm the conclusion that engines below 2.0 liters per cylinder seem to deteriorate in fuel economy faster than would have been predicted from the behavior of larger engines. It is postulated that such deterioration results from a combination of less than optimum fuel spray, wall wetting, and perhaps a greater heat transfer loss than was anticipated. The paper focuses on engines in the size range under two liters per cylinder and addresses some of the problems to be resolved. Means for generating and controlling fuel spray and injection rate shape are presented along with experimental data on fuel sprays and engine combustion.
Technical Paper

The Influence of Pneumatic Atomization on the Lean Limit and IMEP

1989-02-01
890431
Lean limit characteristics of a pneumatic port fuel injection system is compared to a conventional port fuel injection system. The lean limit was based on the measured peak pressure. Those cycles with peak pressures greater than 105 % of the peak pressure for a nonfiring cycle were counted. Experimental data suggests that there are differences in lean limit characteristics between the two systems studied, indicating that fuel preparation processes in these systems influence the lean limit behaviors. Lean limits are generally richer for pneumatic fuel injection than those for conventional fuel injection. At richer fuel-to-air ratios the pneumatic injector usually resulted in higher torques. A simple model to estimate the evaporation occurring in the inlet manifold provided an explanation for the observed data.
Technical Paper

Nonlinear Finite Element Analysis of Diesel Engine Cylinder Head Gasket Joints

1993-09-01
932456
A nonlinear, three-dimensional finite element analysis of the cylinder head gasket joint has been developed to allow accurate prediction of global and local joint behavior during engine operation. Nonlinear material properties and load cases that simulate full cycle engine operation are the analysis foundation. The three-dimensional, nonlinear, full-cycle simulation accurately predicts cylinder head gasket joint response to assembly, thermal, and cylinder pressure loading. Predictions correlate well with measured engine test data. Analysis results include local pressure distribution and global load splits. Insight into joint loading and an improved understanding of overall joint behavior provide the basis for informed design and development decisions.
Technical Paper

Optimized E.F.I. for Natural Gas Fueled Engines

1991-08-01
911650
Increasing emphasis on natural gas as a clean, economical, and abundant fuel, encourages the search for the optimum approach to management of fuel, air and combustion to achieve the best results in power, fuel economy and low exhaust emissions. Electronic injection of fuel directly into the throttle body, intake ports or directly into the cylinder offers important advantages over carburetion or mixing valves. This is particularly true in the case of installations in which the gas supply is available at several atmospheres pressure above maximum intake manifold pressure. The use of choked-flow pulse- width-modulated electronic injectors offers precision control over the engine operating range with a wide variety of options for both stoichiometric and lean bum applications. A complete system utilizing commercially available components together with the application, calibration and engine mapping techniques is described.
Technical Paper

The Application of Boundary Element Analysis to Engine Component Design

1987-02-01
870578
Boundary element analysis (BEA) is an effective computer simulation program for certain applications in design engineering. The BEA technique has been used extensively at Caterpillar for structural analysis of engine and vehicle components. The time savings and modeling ease of BEA are illustrated with specific examples of engine component models. These examples represent a variety of modeling techniques, and include comparisons with measured test data.
Technical Paper

Extending Lean Limit with Mass-Timed Compression Ignition Using a Catalytic Plasma Torch

1992-08-01
921556
Research on the Catalytic Plasma Torch (CPT) ignition system was conducted this last year at BKM, Inc. in San Diego. The results showed that under certain conditions CPT can not only time ignition properly, but also extend the lean stability limit. This concept is based upon compression ignition of the charge in the CPT's integral pre-chamber. Compression ignition is induced by timed catalytic reduction of the pre-chamber's activation energy. This produces almost instantaneous combustion in the pre-chamber and is divided into multiple high velocity torches to rapidly ignite the main chamber charge. The timing of the ignition event is based on the location of the heated catalyst in the pre-chamber and the mass of the charge inducted into the cylinder. The base timing curve can be modified via current control which effects the catalyst activity. Dynamic modification of the timing event is accomplished by using the catalyst as an in-cylinder hot wire anemometer.
Technical Paper

Electronic Fuel Injection for Dual Fuel Diesel Methane

1989-08-01
891652
An electronic fuel injection system for diesel engines has been adapted for dual fuel applications. The simplified and commercially practical system capitalizes on using standardized hardware and software modified for the dual fuel conversion kit Using the conventional diesel pump for pilot injection, electronic injectors provide timed pulses of gas for each cylinder. The system has been successfully applied to both naturally aspirated and turbocharged versions of the Mercedes OM-352 diesel engine and has been placed in service in transit bus applications. Performance data shows over 90% displacement of diesel fuel with the same power and fuel economy as the base diesel engine. Initial reports from the field indicate excellent performance and drivability as well as smoke-free exhaust when in the dual fuel mode.
X