Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

Coordinated Control of Multi-Degree-of Freedom Fuel Systems

1997-04-01
971559
This paper identifies potential performance benefits and computational costs of applying advanced multivariable control theory concepts to coordinate the control of a general multi-degree-of-freedom fuel system. The control variables are injection duration and pressure. The focus is on the design of a robust multi-input multi-output controller using H-infinity and mu synthesis methodology to coordinate the control of injection duration and pressure; reduce overshoots and system sensitivity to parameter variations caused by component aging. Model reduction techniques are used to reduce the order of the H-infinity controller to make it practically implementable. Computer simulation is used to test the robust performance of a generic engine and fuel system model controlled by the reduced order H-infinity controller and a traditional proportional plus integral controller.
Technical Paper

High Performance Biodegradable Fluid Requirements for Mobile Hydraulic Systems

1998-04-08
981518
Technical groups worldwide have been actively developing specifications and requirements for biodegradable hydraulic fluids for mobile applications. These groups have recognized that an industry-wide specification is necessary due to the increase in environmental awareness in the agriculture, construction, forestry, and mining industries, and to the increasing number of local regulations primarily throughout Europe. Caterpillar has responded to this need by publishing a requirement, Caterpillar BF-1, that may be used by Caterpillar dealers, customers, and industry to help select high-performance biodegradable hydraulic fluids. This requirement was written with the input of several organizations that are known to be involved with the development of similar types of specifications and requirements.
Technical Paper

An Evaluation of Common Rail, Hydraulically Intensified Diesel Fuel Injection System Concepts and Rate Shapes

1998-08-11
981930
Hydraulically intensified medium pressure common rail (MPCR) electronic fuel injection systems are an attractive concept for heavy-duty diesel engine applications. They offer excellent packaging flexibility and thorough engine management system integration. Two different concepts were evaluated in this study. They are different in how the pressure generation and injection events are related. One used a direct principle, where the high-pressure generation and injection events occur simultaneously producing a near square injection rate profile. Another concept was based on an indirect principle, where potential energy (pressure) is first stored inside a hydraulic accumulator, and then released during injection, as a subsequent event. A falling rate shape is typically produced in this case. A unit pump, where the hydraulic intensifier is separated from the injector by a high-pressure line, and a unit injector design are considered for both concepts.
Technical Paper

A Study of the Vapor- and Particle-Phase Sulfur Species in the Heavy-Duty Diesel Engine EGR Cooler

1998-05-04
981423
To meet future NO, heavy-duty diesel emissions standards, exhaust gas recirculation (EGR) technology is likely to be used. To improve fuel economy and further lower emissions, the recirculated exhaust gas needs to be cooled, with the possibility that cooling of the exhaust gas may form sulfuric acid condensate in the EGR cooler. This corrosive condensate can cause EGR cooler failure and consequentially result in severe damage to the engine. Both a literature review and a preliminary experimental study were conducted. In this study, a manually controlled EGR system was installed on a 1995 Cummins Ml l-330E engine which was operated at EPA mode 9* (1800 rpm and 75% load). The Goksoyr-Ross method (1)** was used to measure the particle-phase sulfate and vapor-phase H2SO4 and SO2 at the inlet and outlet locations of the EGR cooler, obtaining H2SO4 and SO2 concentrations. About 0.5% of fuel sulfur in the EGR cooler was in the particle-phase.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on Spray SMD and D.I. Emissions

1995-10-01
952360
A study was performed to correlate the Sauter Mean Diameter (SMD), NOx and particulate emissions of a direct injection diesel engine with various injection pressures and different nozzle geometry. The spray experiments and engine emission tests were conducted in parallel using the same fuel injection system and same operating conditions. With high speed photography and digital image analysis, a light extinction technique was used to obtain the spray characteristics which included spray tip penetration length, spray angle, and overall average SMD for the entire spray. The NOx and particulate emissions were acquired by running the tests on a fully instrumented Caterpillar 3406 heavy duty engine. Experimental results showed that for higher injection pressures, a smaller SMD was observed, i.e. a finer spray was obtained. For this case, a higher NOx and lower particulate resulted.
Technical Paper

Application of Digital, Pulse - Width - Modulated, Sonic Flow Injectors for Gaseous Fuels

1995-08-01
951912
Sonic flow, pulse-width-modulated electronic fuel injectors for gaseous fuels provide precise, stable and reliable service for over 1 billion cycles. Techniques for precision flow calibration are described along with dynamic response characteristics. Application techniques including pressure regulation, filtration and procedures for adjusting flow calibration for changes in gas pressure, temperature and composition are presented. Applications include single point (throttle body or mixer), multi-point constant flow and multipoint sequential strategies. Durability testing in parallel with a utility pipeline regulator fully conserves power and gaseous fuel in a simple, low cost, multiple injector test bank.
Technical Paper

A Turbocharged Lean-Burn 4.3 Liter Natural Gas Engine

1995-08-01
951939
The need for a natural gas conversion kit for heavy-duty engines which provides equivalent gasoline performance as well as acceptable exhaust emissions has prompted the use of turbocharged lean-burn engine technology. Turbocharged lean-burn strategy allows operation which meets current heavy-duty emission requirements without the need for a catalytic converter. To insure proper fuel distribution during lean-burn operation, the system includes multi-point sequential fuel injection, fully mapped lambda control, deceleration fuel cut-off, part load cylinder deactivation, and fuel charge stratification. This paper documents the design and development of a General Motors turbocharged, sequential fuel injected, leanburn natural gas engine based on the 4.3L truck engine.
Technical Paper

Meeting the Customer's Needs - Defining the Next Generation Electronically Controlled Unit Injector Concept for Heavy Duty Diesel Engines

1996-04-01
961285
Diesel engine manufacturers have been asking for new, innovative, flexible fuel injection systems in order to meet future diesel engine emission requirements throughout the world and improve engine performance. Engineers at Caterpillar have listened to these requests and developed a fuel system concept to meet their needs. This new fuel system is called the Next Generation Electronic Unit Injector (NGEUI). The new concept is adaptable to mechanically actuated electronic unit injector, hydraulic electronic unit injector, electronic unit pump, and pump/line/nozzle systems. Features of the new fuel system are listed below: 1. Fully controllable injection pressure independent of engine speed and load 2. Injection pressure capability to 207 MPa (30,000 psi) 3. Reduced drive train torsional excitation and improved hydraulic efficiency 4.
Technical Paper

Electronic Direct Fuel Injection System Applied to an 1100cc Two-Stroke Personal Watercraft Engine

1998-02-23
980756
Direct injection has been considered the most effective approach to overcome the inherent short-circuiting of fuel in a two-stroke engine. A practical application of this technology on an 1100cc personal watercraft (PWC) engine is described. The experimental results show a drastic improvement in the engine emissions and fuel economy while maintaining good output performance and drive-ability of the PWC tested. The all-electronic, direct fuel injection engine has demonstrated a 76.3% reduction in hydrocarbon (HC) emissions and 43.03 g/kW-h HC plus oxides of nitrogen (NOx) emissions. This HC + NOx level meets the emission standards applicable to the 2006 model year set by the Environmental Protection Agency (EPA) for new gasoline spark-ignition marine engines. Finally some considerations on extending the technology to include combustion control in the areas of both air and spark management, are recommended.
Technical Paper

Nozzle Effect on High Pressure Diesel Injection

1995-02-01
950083
Studies of transient diesel spray characteristics at high injection pressures were conducted in a constant volume chamber by utilizing a high speed photography and light extinction optical diagnostic technique. Two different types of nozzle hole entrances were investigated: a sharp-edged and a round-edged nozzle. The experimental results show that for the same injection delivery, the sharp-edged inlet injector needed a higher injection pressure to overcome the higher friction loss, but it produced longer spray tip penetration length, larger spray angle, smaller droplet sizes, and also lower particulate emission from a parallel engine test. For the round-edged and smooth edged tips at the same injection pressure, the sharp-edged inlet tip took a longer injection duration to deliver a fixed mass of fuel and produced larger overall average Sauter Mean Diameter (SMD) droplets.
Technical Paper

A 2-D Computational Model Describing the Flow and Filtration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980545
A 2-D computational model was developed to describe the flow and filtration processes, in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state trap loading, as well as the transient behavior of the flow and filtration processes. The theoretical model includes the effect of a copper fuel additive on trap loading and transient operation. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations. The filtration theory incorporated in the time dependent numerical code included the diffusion, inertia, and direct interception mechanisms. Based on a measured upstream particle size distribution, using the filtration theory, the downstream particle size distribution was calculated. The theoretical filtration efficiency, based on particle size distribution, agreed very well (within 1%) with experimental data for a number of different cases.
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

Strategies to Improve Combustion and Emission Characteristics of Dual-Fuel Pilot Ignited Natural Gas Engines

1997-05-01
971712
Dual-fuel pilot ignited natural gas engines have several intrinsic advantages relative to spark ignited; mainly higher thermal efficiency and lower conversion costs. The major drawback is associated with light loads. This paper discusses objectives, approaches, methods and results of the development of strategies which overcome the drawbacks and enhance the advantages. Development of a pilot fuel injection system, having a delivery of only 1 mm3 at a duration of 0.6 ms, was described in a previous paper. This paper concentrates on the results of strategies to reduce unburned methane in the exhaust and to increase the substitution of gas at light loads through skip-fire, by-passing boost air and exhaust gas recirculation techniques. Engine tests proved that with these strategies, diesel fuel replacement of more than 95% over the entire engine operating map, including idle, can be achieved and current and anticipated future emission standards satisfied.
Technical Paper

The Effect of a Ceramic Particulate Trap on the Particulate and Vapor Phase Emissions of a Heavy-Duty Diesel Engine

1991-02-01
910609
Exhaust emissions were characterized from a Cummins LTA10 heavy-duty diesel engine operated at two EPA steady-state modes with and without an uncatalyzed Corning ceramic particulate trap. The regulated emissions of nitrogen oxides (NOx), hydrocarbons (HC), and total particulate matter (TPM) and its components as well as the unregulated emissions of PAH, nitro-PAH, mutagenic activity and particle size distributions were measured. The consistently significant effects of the trap on regulated emissions included reductions of TPM and TPM-associated components. There were no changes in NOx and HC were reduced only at one operating condition. Particle size distribution measurements showed that nuclei-mode particles were formed downstream of the trap, which effectively removed accumulation-mode particles. All of the mutagenicity was direct-acting and the mutagenic activity of the XOC was approximately equivalent to that of the SOF without the trap.
Technical Paper

Diesel Engine Flame Photographs With High Pressure Injection

1988-02-01
880298
The effect of high pressure injection (using an accumulator type unit injector with peak injection pressure of approximately 20,000 psi, having a decreasing injection rate profile) on combustion was studied. Combustion results were obtained using a DDA Series 3–53 diesel engine with both conventional analysis techniques and high speed photography. Diesel No. 2 fuel and a low viscosity - high volatility fuel, similar to gasoline were used in the study. Results were compared against baseline data obtained with standard injectors. Some of the characteristics of high pressure injection used with Diesel No. 2 fuel include: substantially improved ignition, shorter ignition delay, and higher pressure rise. Under heavy load - high speed conditions, greater smokemeter readings were achieved with the high pressure injection system with Diesel No. 2 fuel. Higher flame speeds and hence, greater resistance to knock were observed with the high volatility low cetane fuel.
Technical Paper

The Effects of Fuel Sulfur Concentration on Regulated and Unregulated Heavy-Duty Diesel Emissions

1993-03-01
930730
The effects of fuel sulfur concentration on heavy-duty diesel emissions have been studied at two EPA steady-state operating conditions, mode 9 (1900 RPM, 75% Load) and mode 11(1900 RPM, 25% Load). Data were obtained using one fuel at two sulfur levels (Low Sulfur, LS = 0.01 wt% S and Doped Low Sulfur DS = 0.29 wt% S). All tests were conducted using a Cummins LTA10-300 heavy-duty diesel engine. No significant changes were found for the nitrogen oxides (NOx), soluble organic fractions (SOF) and XAD-2 (a copolymer of styrene and divinylbenzene) organic component (XOC) due to the fuel sulfur level increase at either engine mode. The hydrocarbon (HC) levels were not significantly affected by sulfur at mode 9; however, at mode 11 the HC levels were reduced by 16%. The total particulate matter (TPM) levels increased by 17% at mode 11 and by 24% at mode 9 (both significantly different).
Technical Paper

The Development of a Production Qualified Catalytic Converter

1993-03-01
930133
Catalytic converters have become a viable aftertreatment system for reducing emissions from on-highway diesel engines. This paper addresses the development and production qualification of a catalytic converter. The testing programs that were utilized to qualify the converter system for production included emissions performance, emissions durability, physical durability, and field test programs. This paper reports on the specific tests that were utilized for the emissions performance and emissions durability testing programs. An explanation on the development of an accelerated durability test program is also included. The physical durability section of the paper discusses the development and execution of laboratory bench tests to insure the catalytic converter/muffler maintains acceptable physical integrity.
Technical Paper

Engine Electronics Technology

1993-09-01
932404
Electronics technology has evolved significantly since the first electronically controlled heavy duty on-highway truck engines were introduced in the mid 1980's. Engine control hardware, software, and sensor designs have been driven by many factors. Emissions regulations, fuel economy, engine performance, operator features, fleet management information, diagnostics, vehicle integration, reliability, and new electronics technology are some of those factors. The latest engine electronics technology is not only found in heavy duty on-highway trucks, but in off-highway applications as well. Track-type tractors, haul trucks, wheel loaders, and agricultural tractors now benefit from the advantages of electronic engines. And, many more new applications are being developed.
Technical Paper

Optimized E.F.I. for Natural Gas Fueled Engines

1991-08-01
911650
Increasing emphasis on natural gas as a clean, economical, and abundant fuel, encourages the search for the optimum approach to management of fuel, air and combustion to achieve the best results in power, fuel economy and low exhaust emissions. Electronic injection of fuel directly into the throttle body, intake ports or directly into the cylinder offers important advantages over carburetion or mixing valves. This is particularly true in the case of installations in which the gas supply is available at several atmospheres pressure above maximum intake manifold pressure. The use of choked-flow pulse- width-modulated electronic injectors offers precision control over the engine operating range with a wide variety of options for both stoichiometric and lean bum applications. A complete system utilizing commercially available components together with the application, calibration and engine mapping techniques is described.
X