Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

Effects of Chemical Composition, Heat Treatment, and Microstructure in Splittable Forged Steel Connecting Rods

2015-04-14
2015-01-0522
Fracture split forged steel connecting rods are utilized in many new high performance automotive engines to increase durability. Higher strength levels are needed as the power density increases. Fracture splitting without plastic deformation is necessary for manufacturability. Metallurgical design is a key for achieving the required performance levels. Several medium carbon steels containing 0.07 wt pct P, 0.06 wt pct S and various amounts of Mn, Si, V, and N were produced by vacuum induction melting laboratory heats and hot working the cast ingots into plates. The plates were cooled at varying rates to simulate typical cooling methods after forging. Microstructures were generally ferrite and pearlite as evaluated by light optical and scanning electron microscopy. Mechanical properties were determined by standard tensile tests, high strain rate notched tensile tests, and Charpy V-notch impact tests to assess “splittability”.
Technical Paper

Reliability-Based Robust Design Optimization Using the EDR Method

2007-04-16
2007-01-0550
This paper attempts to integrate a derivative-free probability analysis method to Reliability-Based Robust Design Optimization (RBRDO). The Eigenvector Dimension Reduction (EDR) method is used for the probability analysis method. It has been demonstrated that the EDR method is more accurate and efficient than the Second-Order Reliability Method (SORM) for reliability and quality assessment. Moreover, it can simultaneously evaluate both reliability and quality without any extra expense. Two practical engineering problems (vehicle side impact and layered bonding plates) are used to demonstrate the effectiveness of the EDR method.
Technical Paper

Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method

2007-04-16
2007-01-0559
In the last decade, considerable advances have been made in reliability-based design optimization (RBDO). One assumption in RBDO is that the complete information of input uncertainties are known. However, this assumption is not valid in practical engineering applications, due to the lack of sufficient data. In practical engineering design, information concerning uncertainty parameters is usually in the form of finite samples. Existing methods in uncertainty based design optimization cannot handle design problems involving epistemic uncertainty with a shortage of information. Recently, a novel method referred to as Bayesian Reliability-Based Design Optimization (BRBDO) was proposed to properly handle design problems when engaging both epistemic and aleatory uncertainties [1]. However, when a design problem involves a large number of epistemic variables, the computation task for BRBDO becomes extremely expensive.
Technical Paper

Innovative Six Sigma Design Using the Eigenvector Dimension-Reduction (EDR) Method

2007-04-16
2007-01-0799
This paper presents an innovative approach for quality engineering using the Eigenvector Dimension Reduction (EDR) Method. Currently industry relies heavily upon the use of the Taguchi method and Signal to Noise (S/N) ratios as quality indices. However, some disadvantages of the Taguchi method exist such as, its reliance upon samples occurring at specified levels, results to be valid at only the current design point, and its expensiveness to maintain a certain level of confidence. Recently, it has been shown that the EDR method can accurately provide an analysis of variance, similar to that of the Taguchi method, but is not hindered by the aforementioned drawbacks of the Taguchi method. This is evident because the EDR method is based upon fundamental statistics, where the statistical information for each design parameter is used to estimate the uncertainty propagation through engineering systems.
Technical Paper

Handheld Fine Water Mist Extinguisher for Spacecraft

2008-06-29
2008-01-2040
Fine water mist has become a commercial technology for fire suppression in multiple applications. With funding from NASA, ADA Technologies, Inc. (ADA) is developing a handheld fine water mist fire extinguisher for use on manned spacecraft and in future planetary habitats. This design employs only water and nitrogen as suppression agents to allow local refill and reuse. The prototype design incorporates features to generate a uniform fine water mist regardless of the direction of the gravitational vector or lack of gravity altogether. The system has been proven to extinguish open fires and hidden fire scenarios in tests conducted at the Colorado School of Mines (CSM). This design can be deployed as a portable extinguisher or as an automated system for local fire protection in instrument racks or storage spaces. Continued development will result in prototype hardware suitable for use on future manned spacecraft.
Technical Paper

Advances in Development of a Fine Water Mist Portable Fire Extinguisher

2009-07-12
2009-01-2510
ADA Technologies, Inc. has designed and built a microgravity-tolerant portable fire extinguisher prototype for use in manned spacecraft and planetary habitats. This device employs Fine Water Mist (FWM) as the fire extinguishing agent, and is refillable from standard stores on long-duration missions. The design uses a single storage tank for minimal mass and volume. The prototype employs a dual-fluid atomizer concept where the pressurant gas (nitrogen) also enhances the water atomization process to generate a droplet size distribution in the optimum diameter range of 10 to 50 micrometers. The expanding discharge gas plume carries the mist to the immediate vicinity of the fire where its extensive surface area promotes high heat transfer rates. A series of 80 fire suppression tests was recently completed to evaluate design options for the hardware and validate performance on three representative fire scenarios.
Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

The Impact of RoHS on Electric Vehicles in the Chinese Automotive Market

2016-09-27
2016-01-8124
China has become the world’s largest vehicle market in terms of sales volume. Automobiles sales keep growing in recent years despite the declining economic growth rate. Due to the increasing attention given to the environmental impact, more stringent emission regulations are being drafted to control traditional internal combustion engine emissions. In order to reduce vehicle emissions, environmentally-friendly new-energy vehicles, such as electric vehicles and plug-in hybrid vehicles, are being promoted by government policies. The Chinese government plans to boost sales of new-energy cars to account for about five percent of China’s total vehicle sales. It is well known that more electric and electronic components will be integrated into a vehicle platform during vehicle electrification.
Technical Paper

Study of the Portability of a 3D CFD Model for the Dynamics of Sprays Issuing from Multi-Hole GDI Injectors

2011-08-30
2011-01-1897
Three high pressure multi-hole GDI injectors, one manufactured by Continental, two manufactured by Bosch, are experimentally characterized under various injection strategies in terms of instantaneous mass flow rate and fuel dispersion. Spray visualization within an optically accessible pressure vessel allows the measurement of the single jet cone angle and penetration length. A portable numerical model for the issuing spray dynamics is developed within the AVL Fire code, exploiting a log-normal distribution for the initial droplets diameter, whose expected value and variance are properly defined as a function of the main physical parameters. Tuning of the entering constants is realized by means of an automatic optimization procedure. An example of application of the spray model within a 3D simulation of the in-cylinder process of a GDI engine is presented. Effects of splitting injection into two successive events are discussed.
Technical Paper

Finite Difference Heat Transfer Model of a Steel-clad Aluminum Brake Rotor

2005-10-09
2005-01-3943
This paper describes the heat transfer model of a composite aluminum brake rotor and compares the predicted temperatures to dynamometer measurements taken during a 15 fade stop trial. The model is based on meshed surface geometry which is simulated using RadTherm software. Methods for realistically modeling heat load distribution, surface rotation, convection cooling and radiation losses are also discussed. A comparison of the simulation results to the dynamometer data shows very close agreement throughout the fade stop trial. As such, the model is considered valid and will be used for further Steel Clad Aluminum (SCA) rotor development.
Technical Paper

Cost Reduction Challenges and Emission Solutions in Emerging Markets for the Automotive Industry

2013-09-24
2013-01-2441
The growth of auto sales in emerging markets provides a good opportunity for automakers. Cost is a key factor for any automaker to win in an emerging market. This paper analyzes risks and opportunities in a low cost manufacturing environment. The Chinese auto market is used as an example and three categories of risks are analyzed. A typical risk assessment for cost reduction includes the analysis of environment risks, process risks and strategic risks associated with all phases of a product life. In an emerging market, emission regulations are a rapidly-evolving environment variable, since most countries with less regulated emission codes try to catch up with the newly- developed technologies to meet sustainable growth targets. Emission regulations have a huge impact on product design, manufacturing and maintenance in the automotive industry, and hence the related cost reduction must be thoroughly analyzed during risk assessment.
Technical Paper

Vibrational and Sound Radiation Properties of a Double Layered Diesel Engine Gear Cover

1999-05-17
1999-01-1773
The introduction of a thin fluid layer between two layers of sheet metal offers a highly effective and economical alternative to the use of constrained viscoelastic damping layers in sheet metal structures. A diesel engine gear cover, which is constructed of two sheet metal sections spot welded together, takes advantage of fluid layer damping to produce superior vibration and sound radiation performance. In this paper, the bending of a double layered plate coupled through a thin fluid layer is modeled using a traveling wave approach which results in a impedance function that can be used to assess the vibration and sound radiation performance of practical double layered plate structures. Guided by this model, the influence of fluid layer thickness and inside-to-outside sheet thickness is studied.
Technical Paper

Measurements of Deer with RADAR and LIDAR for Active Safety Systems

2015-04-14
2015-01-0217
To reduce the number and severity of accidents, automakers have invested in active safety systems to detect and track neighboring vehicles to prevent accidents. These systems often employ RADAR and LIDAR, which are not degraded by low lighting conditions. In this research effort, reflections from deer were measured using two sensors often employed in automotive active safety systems. Based on a total estimate of one million deer-vehicle collisions per year in the United States, the estimated cost is calculated to be $8,388,000,000 [1]. The majority of crashes occurs at dawn and dusk in the Fall and Spring [2]. The data includes tens of thousands of RADAR and LIDAR measurements of white-tail deer. The RADAR operates from 76.2 to 76.8 GHz. The LIDAR is a time-of-flight device operating at 905 nm. The measurements capture the deer in many aspects: standing alone, feeding, walking, running, does with fawns, deer grooming each other and gathered in large groups.
Technical Paper

Development of a Procedure to Correlate, Validate and Confirm Radar Characteristics of Surrogate Targets for ADAS Testing

2020-04-14
2020-01-0716
Surrogate targets are used throughout the automotive industry to safely and repeatably test Advanced Driver Assistance Systems (ADAS) and will likely find similar applications in tests of Automated Driving Systems. For those test results to be applicable to real-world scenarios, the surrogate targets must be representative of the real-world objects that they emulate. Early target development efforts were generally divided into those that relied on sophisticated radar measurement facilities and those that relied on ad-hoc measurements using automotive grade equipment. This situation made communication and interpretation of results between research groups, target developers and target users difficult. SAE J3122, “Test Target Correlation - Radar Characteristics”, was developed by the SAE Active Safety Systems Standards Committee to address this and other challenges associated with target development and use. J3122 addresses four topics.
X