Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Nozzle Effect on High Pressure Diesel Injection

1995-02-01
950083
Studies of transient diesel spray characteristics at high injection pressures were conducted in a constant volume chamber by utilizing a high speed photography and light extinction optical diagnostic technique. Two different types of nozzle hole entrances were investigated: a sharp-edged and a round-edged nozzle. The experimental results show that for the same injection delivery, the sharp-edged inlet injector needed a higher injection pressure to overcome the higher friction loss, but it produced longer spray tip penetration length, larger spray angle, smaller droplet sizes, and also lower particulate emission from a parallel engine test. For the round-edged and smooth edged tips at the same injection pressure, the sharp-edged inlet tip took a longer injection duration to deliver a fixed mass of fuel and produced larger overall average Sauter Mean Diameter (SMD) droplets.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on Spray SMD and D.I. Emissions

1995-10-01
952360
A study was performed to correlate the Sauter Mean Diameter (SMD), NOx and particulate emissions of a direct injection diesel engine with various injection pressures and different nozzle geometry. The spray experiments and engine emission tests were conducted in parallel using the same fuel injection system and same operating conditions. With high speed photography and digital image analysis, a light extinction technique was used to obtain the spray characteristics which included spray tip penetration length, spray angle, and overall average SMD for the entire spray. The NOx and particulate emissions were acquired by running the tests on a fully instrumented Caterpillar 3406 heavy duty engine. Experimental results showed that for higher injection pressures, a smaller SMD was observed, i.e. a finer spray was obtained. For this case, a higher NOx and lower particulate resulted.
X