Refine Your Search




Search Results


Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

The Effects of Natural Aging on Fleet and Durability Vehicle Engine Mounts from a Dynamic Characterization Perspective

Elastomers are traditionally designed for use in applications that require specific mechanical properties. Unfortunately, these properties change with respect to many different variables including heat, light, fatigue, oxygen, ozone, and the catalytic effects of trace elements. When elastomeric mounts are designed for NVH use in vehicles, they are designed to isolate specific unwanted frequencies. As the elastomers age however, the desired elastomeric properties may have changed with time. This study looks at the variability seen in new vehicle engine mounts and how the dynamic properties change with respect to miles accumulated on fleet and durability test vehicles.
Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

Fuel Evaporation Parameter Identification during SI Cold Start

The stochastic properties of continuous time model parameters obtained through discrete least squares estimation are examined. Particular attention is given to the application of estimating the fuel evaporation dynamics of a V-8 SI engine. The continuous time parameter distributions in this case are biased. The bias is shown to be a function of both measurement noise and sampling rate selection. Analysis and experimental results suggest that for each particular model, there is a corresponding optimum sampling rate. A bias compensation formula is proposed that improves the accuracy of least squares estimation without iterative techniques.
Technical Paper

An Early TSTO Fully Reusable Vehicle Design Used to “Calibrate” Stage 1 Combined-Cycle Hypersonic Propulsion Systems

Two-stage-to-orbit (TSTO) conceptual-level vehicle designs were evolved by the Lockheed-California Company in the mid-1960s. The purpose was to provide a vehicle-systems-level basis for assessing the payload performance potential of a new class of Stage 1 propulsion systems: combined-cycle airbreathing/rocket engines. TSTO configurations were also established as conventional all-rocket and all-airbreathing engine comparison cases. These vehicle designs and their operating characteristics, along with their orbital payload-delivery capabilities, are presented for consideration by today's space transportation systems planning community.
Technical Paper

A Cascade Atomization and Drop Breakup Model for the Simulation of High-Pressure Liquid Jets

A further development of the ETAB atomization and drop breakup model for high pressure-driven liquid fuel jets, has been developed, tuned and validated. As in the ETAB model, this breakup model reflects a cascade of drop breakups, where the breakup criterion is determined by the Taylor drop oscillator and each breakup event resembles experimentally observed breakup mechanisms. A fragmented liquid core due to inner-nozzle disturbances is achieved by injecting large droplets subject to this breakup cascade. These large droplets are equipped with appropriate initial deformation velocities in order to obtain experimentally observed breakup lengths. In contrast to the ETAB model which consideres only the bag breakup or the stripping breakup mechanism, the new model has been extended to include the catastrophic breakup regime. In addition, a continuity condition on the breakup parameters has lead to the reduction of one model constant.
Technical Paper

Diesel Engine Electric Turbo Compound Technology

A cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar is aimed at demonstrating electric turbo compound technology on a Class 8 truck engine. The goal is to demonstrate the level of fuel efficiency improvement attainable with an electric turbocompound system. The system consists of a turbocharger with an electric motor/generator integrated into the turbo shaft. The generator extracts surplus power at the turbine, and the electricity it produces is used to run a motor mounted on the engine crankshaft, recovering otherwise wasted energy in the exhaust gases. The electric turbocompound system also provides more control flexibility in that the amount of power extracted can be varied. This allows for control of engine boost and thus air/fuel ratio. The paper presents the status of development of an electric turbocompound system for a Caterpillar heavy-duty on-highway truck engine.
Technical Paper

A Bench Test Procedure for Evaluating the Cylinder Liner Pitting Protection Performance of Engine Coolant Additives for Heavy Duty Diesel Engine Applications

Evaluations of the liner pitting protection performance provided by engine coolant corrosion inhibitors and supplemental coolant additives have presented many problems. Current practice involves the use of full scale engine tests to show that engine coolant inhibitors provide sufficient liner pitting protection. These are too time-consuming and expensive to use as the basis for industry-wide specifications. Ultrasonic vibratory test rigs have been used for screening purposes in individual labs, but these have suffered from poor reproducibility and insufficient additive differentiation. A new test procedure has been developed that reduces these problems. The new procedure compares candidate formulations against a good and bad reference fluid to reduce the concern for problems with calibration and equipment variability. Cast iron test coupons with well-defined microstructure and processing requirements significantly reduce test variability.
Technical Paper

Advanced Computational Methods for Predicting Flow Losses in Intake Regions of Diesel Engines

A computational methodology has been developed for loss prediction in intake regions of internal combustion engines. The methodology consists of a hierarchy of four major tasks: (1) proper computational modeling of flow physics; (2) exact geometry and high quality and generation; (3) discretization schemes for low numerical viscosity; and (4) higher order turbulence modeling. Only when these four tasks are dealt with properly will a computational simulation yield consistently accurate results. This methodology, which is has been successfully tested and validated against benchmark quality data for a wide variety of complex 2-D and 3-D laminar and turbulent flow situations, is applied here to a loss prediction problem from industry. Total pressure losses in the intake region (inlet duct, manifold, plenum, ports, valves, and cylinder) of a Caterpillar diesel engine are predicted computationally and compared to experimental data.
Technical Paper

Coordinated Control of Multi-Degree-of Freedom Fuel Systems

This paper identifies potential performance benefits and computational costs of applying advanced multivariable control theory concepts to coordinate the control of a general multi-degree-of-freedom fuel system. The control variables are injection duration and pressure. The focus is on the design of a robust multi-input multi-output controller using H-infinity and mu synthesis methodology to coordinate the control of injection duration and pressure; reduce overshoots and system sensitivity to parameter variations caused by component aging. Model reduction techniques are used to reduce the order of the H-infinity controller to make it practically implementable. Computer simulation is used to test the robust performance of a generic engine and fuel system model controlled by the reduced order H-infinity controller and a traditional proportional plus integral controller.
Technical Paper

High Performance Biodegradable Fluid Requirements for Mobile Hydraulic Systems

Technical groups worldwide have been actively developing specifications and requirements for biodegradable hydraulic fluids for mobile applications. These groups have recognized that an industry-wide specification is necessary due to the increase in environmental awareness in the agriculture, construction, forestry, and mining industries, and to the increasing number of local regulations primarily throughout Europe. Caterpillar has responded to this need by publishing a requirement, Caterpillar BF-1, that may be used by Caterpillar dealers, customers, and industry to help select high-performance biodegradable hydraulic fluids. This requirement was written with the input of several organizations that are known to be involved with the development of similar types of specifications and requirements.
Technical Paper

A Study of the Vapor- and Particle-Phase Sulfur Species in the Heavy-Duty Diesel Engine EGR Cooler

To meet future NO, heavy-duty diesel emissions standards, exhaust gas recirculation (EGR) technology is likely to be used. To improve fuel economy and further lower emissions, the recirculated exhaust gas needs to be cooled, with the possibility that cooling of the exhaust gas may form sulfuric acid condensate in the EGR cooler. This corrosive condensate can cause EGR cooler failure and consequentially result in severe damage to the engine. Both a literature review and a preliminary experimental study were conducted. In this study, a manually controlled EGR system was installed on a 1995 Cummins Ml l-330E engine which was operated at EPA mode 9* (1800 rpm and 75% load). The Goksoyr-Ross method (1)** was used to measure the particle-phase sulfate and vapor-phase H2SO4 and SO2 at the inlet and outlet locations of the EGR cooler, obtaining H2SO4 and SO2 concentrations. About 0.5% of fuel sulfur in the EGR cooler was in the particle-phase.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on Spray SMD and D.I. Emissions

A study was performed to correlate the Sauter Mean Diameter (SMD), NOx and particulate emissions of a direct injection diesel engine with various injection pressures and different nozzle geometry. The spray experiments and engine emission tests were conducted in parallel using the same fuel injection system and same operating conditions. With high speed photography and digital image analysis, a light extinction technique was used to obtain the spray characteristics which included spray tip penetration length, spray angle, and overall average SMD for the entire spray. The NOx and particulate emissions were acquired by running the tests on a fully instrumented Caterpillar 3406 heavy duty engine. Experimental results showed that for higher injection pressures, a smaller SMD was observed, i.e. a finer spray was obtained. For this case, a higher NOx and lower particulate resulted.
Technical Paper

Performance of Organic Acid Based Coolants in Heavy Duty Applications

Coolant formulations based on organic acid corrosion inhibitor technology have been tested in over 180 heavy duty engines for a total of more than 50 million kilometers. This testing has been used to document long life coolant performance in various engine types from four major engine manufacturers. Inspections of engines using organic acid based coolant (with no supplemental coolant additive) for up to 610,000 kilometers showed excellent protection of metal engine components. Improved protection was observed against cylinder liner, water pump, and aluminum spacer deck corrosion. In addition, data accumulated from this testing were used to develop depletion rate curves for long life coolant corrosion inhibitors, including tolyltriazole and nitrite. Nitrite was observed to deplete less rapidly in long life coolants than in conventional formulations.
Technical Paper

Development of Plasma Spray Coated Cylinder Liners

Improved fuel economy and reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, such insulation will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150°C to over 300°C. Since existing ring/liner materials cannot withstand these higher operating temperatures alternatives are needed for this critical tribological interface. This paper describes the development of a cost effective ID grinding technique for machining the bores of plasma sprayed diesel engine cylinder liners.
Technical Paper

The Hydrocycle Rocket Free-Piston Instant-Conversion Adiabatic Engine and One-Range, Infinitely Variable Hydrostatic Transmission System

The ideal internal-combustion crankshaft engine would burn all the fuel near top center without detonation, then expand the whole charge until exhaust Both events are impossible with current piston engines. The Hydrocycle Rocket Piston Engine concept employs a free piston in the head of a two-stroke-cycle engine. Combustion between the crank piston and the free piston allows direct conversion of combustion fluid expansion to hydrostatic fluid flow and accumulator gas compression with perfect timing and minimum thermal and mechanical losses. An infinitely variable, radial hydrostatic motor gives the driver smooth, gas-cushioned acceleration and stepless performance. Maximum economy is attained since the driver is forced to run the engine at optimum minimum speed to match road load oadin all traffic conditions.
Technical Paper

Meeting the Customer's Needs - Defining the Next Generation Electronically Controlled Unit Injector Concept for Heavy Duty Diesel Engines

Diesel engine manufacturers have been asking for new, innovative, flexible fuel injection systems in order to meet future diesel engine emission requirements throughout the world and improve engine performance. Engineers at Caterpillar have listened to these requests and developed a fuel system concept to meet their needs. This new fuel system is called the Next Generation Electronic Unit Injector (NGEUI). The new concept is adaptable to mechanically actuated electronic unit injector, hydraulic electronic unit injector, electronic unit pump, and pump/line/nozzle systems. Features of the new fuel system are listed below: 1. Fully controllable injection pressure independent of engine speed and load 2. Injection pressure capability to 207 MPa (30,000 psi) 3. Reduced drive train torsional excitation and improved hydraulic efficiency 4.
Technical Paper

A Comparison of Time-Averaged Piston Temperatures and Surface Heat Flux Between a Direct-Fuel Injected and Carbureted Two-Stroke Engine

Time-averaged temperatures at critical locations on the piston of a direct-fuel injected, two-stroke, 388 cm3, research engine were measured using an infrared telemetry device. The piston temperatures were compared to data [7] of a carbureted version of the two-stroke engine, that was operated at comparable conditions. All temperatures were obtained at wide open throttle, and varying engine speeds (2000-4500 rpm, at 500 rpm intervals). The temperatures were measured in a configuration that allowed for axial heat flux to be determined through the piston. The heat flux was compared to carbureted data [8] obtained using measured piston temperatures as boundary conditions for a computer model, and solving for the heat flux. The direct-fuel-injected piston temperatures and heat fluxes were significantly higher than the carbureted piston. On the exhaust side of the piston, the direct-fuel injected piston temperatures ranged from 33-73 °C higher than the conventional carbureted piston.
Technical Paper

Development of a Fiber Reinforced Aluminum Piston for Heavy Duty Diesel Engines

This paper discusses a joint customer-supplier program intended to further develop the ability to design and apply aluminum alloy pistons selectively reinforced with ceramic fibers for heavy duty diesel engines. The approach begins with a comprehensive mechanical properties evaluation of base and reinforced material. The results demonstrated significant fatigue strength improvement due to fiber reinforcement, specially at temperatures greater than 300°C. A simplified numerical analysis is performed to predict the temperature and fatigue factor values at the combustion bowl area for conventional and reinforced aluminum piston designs for a 6.6 liter engine. It concludes that reinforced piston have a life expectation longer than conventional aluminum piston. Structural engine tests under severe conditions of specific power and peak cylinder pressure were used to confirm the results of the cyclic properties evaluation and numerical analysis.
Technical Paper


An open architecture of electronic controls and monitors has been conceived and developed to meet marine application requirements and provide vessel control features. Integration of this system reduces the number of components, improves reliability, and eases installation and troubleshooting. The architecture provides the plan for system integration, while allowing flexibility for customer component selection, system technology upgrades, and expansion with additional features. Serial links are used to provide the data channels within the modular style architecture and the communication ports to share information with the operators.