Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Comparison of Lumped and Unsteady 1-D Models for Simulation of a Radial Turbine

2009-04-20
2009-01-0303
The physical 1-D model of a radial turbine consists of a set of gas ducts featuring total pressure and/or temperature changes and losses. Therefore, the wave propagation and filling/emptying plays a significant role if a turbine is subjected to unsteady gas flow. The results of unsteady turbine simulation using the basic modules of generalized 1-D manifold solver in GT Power are demonstrated. The turbine model calibration parameters can be identified by means of 1-D steady model used in optimization code loop. The examples of model results are compared to steady flow map predictions of turbine efficiency and engine pumping loop work. The model may be used for prediction of turbine data in out-of-design points as presented in the paper. The other important role of a model, however, is an accurate evaluation of turbine parameters from pressure and speed measurements at an engine in operation.
Technical Paper

A Response Surface Based Tool for Evaluating Vehicle Performance in the Pedestrian Leg Impact Test

2008-04-14
2008-01-1244
An interactive tool for predicting the performance of vehicle designs in the pedestrian leg impact test has been developed. This tool allows users to modify the design of a vehicle front structure through the use of a graphical interface, and then evaluates the performance of the design with a response surface. This performance is displayed in the graphical interface, providing the user with nearly instantaneous feedback to his design changes. An example is shown that demonstrates how the tool can be used to help guide the user towards vehicle designs that are likely to improve performance. As part of the development of this tool, a simplified, parametric finite element model of the front structure of the vehicle was created. This vehicle model included eleven parameters that could be adjusted to change the structural dimensions and structural behavior of the model.
Technical Paper

Dynamics of Hybrid Propulsion System with Electric Power Divider

2007-11-01
2007-01-2134
The paper deals with dynamics of hybrid propulsion system with electric power divider. The physical laboratory model was chosen as example. Mathematical model for transient phenomena during accelerating period of the hybrid vehicle using electric power divider was developed. The accelerating period is divided into three parts. During the first part from stand condition to very low car velocity is the vehicle driven only by the energy from battery. During the second part the battery is totally off and only the combustion engine drives the vehicle. The engine is controlled by ASR system not to bring the vehicle into slipping by getting over the adhesion. In the third part of accelerating period the combustion engine power and revolutions are controlled to get minimum fuel consumption. The simulation can help to find good strategy of the powertrain control.
Technical Paper

Modeling Interior Noise in Off-Highway Trucks using Statistical Energy Analysis

2009-05-19
2009-01-2239
The objective of this project was to model and study the interior noise in an Off-Highway Truck cab using Statistical Energy Analysis (SEA). The analysis was performed using two different modeling techniques. In the first method, the structural members of the cab were modeled along with the panels and the interior cavity. In the second method, the structural members were not modeled and only the acoustic cavity and panels were modeled. Comparison was done between the model with structural members and without structural members to evaluate the necessity of modeling the structure. Correlation between model prediction of interior sound pressure and test data was performed for eight different load conditions. Power contribution analysis was performed to find dominant paths and 1/3rd octave band frequencies.
Technical Paper

Improved Simulation of Transient Engine Operations at Unsteady Speed Combining 1-D and 3-D Modeling

2009-04-20
2009-01-1109
The new simulation tool consists of an iterative loop of a 3-D code in parallel to a 1-D code that is employed to simulate transient engine cycles. The 1-D code yields the basic pattern of initial and boundary conditions and the 3-D simulations at several typical engine operating points are used to crosscheck the performance as well as aid in the model calibration. A flexible regression model of the fuel burn rate and the associated ROHR has been developed in conjunction with the 3-D simulations using a combination of three added Vibe functions. The emissions at the end of the expansion stroke are also predicted. The parameters of the Vibe functions and emissions are found via nonlinear regression based on state parameters such as engine speed, relative A/F ratio, EGR/rest gas contents, injection timings, etc. Additional 3-D simulations that are made at specific engine operating points complement this compact burn rate parameter library.
Technical Paper

Modeling, Design and Validation of an Exhaust Muffler for a Commercial Telehandler

2009-05-19
2009-01-2047
This paper describes the design, development and validation of a muffler for reducing exhaust noise from a commercial tele-handler. It also describes the procedure for modeling and optimizing the exhaust muffler along with experimental measurement for correlating the sound transmission loss (STL). The design and tuning of the tele-handler muffler was based on several factors including overall performance, cost, weight, available space, and ease of manufacturing. The analysis for predicting the STL was conducted using the commercial software LMS Virtual Lab (LMS-VL), while the experimental validation was carried out in the laboratory using the two load setup. First, in order to gain confidence in the applicability of LMS-VL, the STL of some simple expansion mufflers with and without extended inlet/outlet and perforations was considered. The STL of these mufflers were predicted using the traditional plane wave transfer matrix approach.
Technical Paper

Reduced-Order Robust Controller Design for Vibration Reduction

2016-06-15
2016-01-1845
Active vibration reduction for lightweight structures has attracted more and more attention in automotive industries. In this paper, reduced-order controllers are designed based on H∞ techniques to realize vibration reduction. A finite element model of piezo-based smart structure is constructed from which a nominal model containing 5 modes and validation model containing 10 modes are extracted. A mixed-sensitivity robust H∞ controller is firstly designed based on the nominal structural model. Considering the ease of controller deployment, an order reduction for the controller is then exploited using balanced truncation method. The effectiveness of the reduced-order controller is finally verified on the validation model via system simulations.
Technical Paper

Investigating Limitations of a Two-Zone NOx Model Applied to DI Diesel Combustion Using 3-D Modeling

2016-04-05
2016-01-0576
A two-zone NOx model intended for 1-D engine simulations was developed and used to model NOx emissions from a 2.5 L single-cylinder engine. The intent of the present work is to understand key aspects of a simple NOx model that are needed for predictive accuracy, including NOx formation and destruction phenomena in a DI Diesel combustion system. The presented two-zone model is fundamentally based on the heat release rate and thermodynamic incylinder data, and uses the Extended Zeldovich mechanism to model NO. Results show that the model responded very well to changes in speed, load, injection timing, and EGR level. It matched measured tail pipe NOx levels within 20%, using a single tuning setup. When the model was applied to varied injection rate shapes, it showed correct sensitivity to speed, load, injection timing, and EGR level, but the absolute level was well outside the target accuracy. The same limitation was seen when applying the Plee NOx model.
Technical Paper

Novel Approach to Integration of Turbocompounding, Electrification and Supercharging Through Use of Planetary Gear System

2018-04-03
2018-01-0887
Technologies that provide potential for significant improvements in engine efficiency include, engine downsizing/downspeeding (enabled by advanced boosting systems such as an electrically driven compressor), waste heat recovery through turbocompounding or organic Rankine cycle and 48 V mild hybridization. FEV’s Integrated Turbocompounding/Waste Heat Recovery (WHR), Electrification and Supercharging (FEV-ITES) is a novel approach for integration of these technologies in a single unit. This approach provides a reduced cost, reduced space claim and an increase in engine efficiency, when compared to the independent integration of each of these technologies. This approach is enabled through the application of a planetary gear system. Specifically, a secondary compressor is connected to the ring gear, a turbocompounding turbine or organic Rankine cycle (ORC) expander is connected to the sun gear, and an electric motor/generator is connected to the carrier gear.
Technical Paper

Flexible Body Dynamic Simulation of a Large Mining Truck

1994-04-01
941117
A three dimensional mathematical model of a Caterpillar mining truck has been developed to simulate transient structural deformation and suspension response of a large mining truck traversing a known rough terrain course. The model incorporates compliant (finite element) representations of the truck frame, dump body, and rear axle housing into a dynamic mechanical system simulation model. Model results - frame acceleration, axle housing elastic deformation, and suspension response (strut pressures and displacements) are correlated with measured data from an instrumented truck traversing the steel speed bump portion of the rough terrain course. Results demonstrate that complex truck behavior can be simulated by combining finite element and mechanical system simulations.
Technical Paper

Finite Element Approach to Modeling the Dynamics Response of Rubber-Belted Tractor

1997-04-01
971563
This research project investigates the feasibility of using a commercial finite element code to capture the dynamic response of a typical rubber-belted tractor for agricultural applications. The investigation focused on one of Caterpillar Inc.'s Ag Challenger Series tractors. A feasibility study concluded that Abaqus/Explicit [1], a finite element code utilizing the explicit scheme, had the desirable features needed to develop such a large-scale tractor model. These features include an efficient time integration scheme, three-dimensional generalized multiple contacts, and nonlinear material characterization. The fully-assembled tractor model was successful in simulating the forward motion. A preliminary validation indicated that the tractor model was able to predict a trend which was observed in field tests accurately.
Technical Paper

Utilization of a Twin Scroll Radial Centripetal Turbine Model

2019-04-02
2019-01-0191
The article describes the utilization of the map-less approach in simulation of single and twin scroll radial turbines. The conventional steady flow maps are not used. An unsteady 1-D model of a twin scroll turbine includes scrolls, mixing of flows upstream of the impeller, turbine wheel, leakages and outlet pipe. Developed physical turbine model was calibrated with data from experiments at specific steady flow turbocharger test bed with open loop, which enables to achieve arbitrary level of an impeller admission via throttling in separate sections. A selected twin scroll turbine was tested under full, partial flow admission of an impeller and extreme partial admission with closed section. The required number of operating points is relatively low compared with conventional steady flow maps, when the maps have to be generated for each level of an impeller admission. The calibration process of the full 1-D turbine model is described.
Technical Paper

Scavenged Pre-Chamber Volume Effect on Gas Engine Performance and Emissions

2019-04-02
2019-01-0258
This work presents development and results of experimental and numerical investigations of an advanced ignition system with a scavenged pre-chamber for a natural gas fueled engine with a bore of 102 mm and stroke of 120 mm. Two combustion concepts are taken into account. The lean burn concept is used to minimize engine out emissions of nitric oxides (NOx) and to achieve high thermal efficiency at low load. The in-house designed scavenged pre-chamber enables the engine to be operated up to the air-excess ratio (lambda) of 2. A stoichiometric (lambda=1) operation is also possible. It is compatible with a three-way catalyst concept, at high load and potentially transient modes and can provide as high as possible engine power density. The influence of the scavenged pre-chamber volume on the combustion and performance within the range of the operational points of the naturally aspirated engine is presented in this paper.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

2016-04-05
2016-01-0224
To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Journal Article

Multi-Physics and CFD Analysis of an Enclosed Coaxial Carbon Nanotube Speaker for Automotive Exhaust Noise Cancellation

2019-06-05
2019-01-1569
Automotive exhaust noise is one of the major sources of noise pollution and it is controlled by passive control system (mufflers) and active control system (loudspeakers and active control algorithm). Mufflers are heavy, bulky and large in size while loudspeakers have a working temperature limitation. Carbon nanotube (CNT) speakers generate sound due to the thermoacoustic effect. CNT speakers are also lightweight, flexible, have acoustic and light transparency as well as high operating temperature. These properties make them ideal to overcome the limitations of the current exhaust noise control systems. An enclosed, coaxial CNT speaker is designed for exhaust noise cancellation application. The development of a 3D multi-physics (coupling of electrical, thermal and acoustical domains) model, for the coaxial speaker is discussed in this paper. The model is used to simulate the sound pressure level, input power versus ambient temperature and efficiency.
Journal Article

Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System

2016-04-05
2016-01-1091
This paper reports on a comprehensive, crank-angle transient, three dimensional, computational fluid dynamics (CFD) model of the complete lubrication system of a multi-cylinder engine using the CFD software Simerics-Sys / PumpLinx. This work represents an advance in system-level modeling of the engine lubrication system over the current state of the art of one-dimensional models. The model was applied to a 16 cylinder, reciprocating internal combustion engine lubrication system. The computational domain includes the positive displacement gear pump, the pressure regulation valve, bearings, piston pins, piston cooling jets, the oil cooler, the oil filter etc… The motion of the regulation valve was predicted by strongly coupling a rigorous force balance on the valve to the flow.
X