Refine Your Search

Topic

Search Results

Technical Paper

Development of a 1-D CPF Model to Simulate Active Regeneration of a Diesel Particulate Filter

2009-04-20
2009-01-1283
A quasi-steady 1-dimensional computer model of a catalyzed particulate filter (CPF) capable of simulating active regeneration of the CPF via diesel fuel injection upstream of a diesel oxidation catalyst (DOC) or other means to increase the exhaust gas temperature has been developed. This model is capable of predicting gaseous species concentrations (HC's, CO, NO and NO2) and exhaust gas temperatures within and after the CPF, for given input values of gaseous species and PM concentrations before the CPF and other inlet variables such as time-varying temperature of the exhaust gas at the inlet of the CPF and volumetric flow rate of exhaust gas.
Technical Paper

Effect of Diesel and Water Co-injection with Real-Time Control on Diesel Engine Performance and Emissions

2008-04-14
2008-01-1190
A system for injection of diesel fuel and water with real-time control, or real-time water injection (RTWI), was developed and applied to a heavy-duty diesel engine. The RTWI system featured electronic unit pumps that delivered metered volumes of water to electronic unit injectors (EUI) modified to incorporate the water addition passages. The water and diesel mixed in the injector tip such that the initial portion of the injection contained mostly diesel fuel, while the balance of the injection was a water and diesel mixture. With this hardware, real-time cycle-by-cycle control of water mass was used to mitigate soot formation during diesel combustion. Using RTWI alone, NOx emissions were reduced by 42%. Using high-pressure-loop exhaust gas recirculation (EGR) and conventional diesel combustion with RTWI, the NOx was reduced by 82%.
Technical Paper

Hydrotreated Vegetable Oil and Miller Timing in a Medium-Speed CI Engine

2012-04-16
2012-01-0862
The objective of this paper is to analyse the performance and the combustion of a large-bore single-cylinder medium speed engine running with hydrotreated vegetable oil. This fuel has a paraffinic chemical structure and high Cetane number. These features enable achievement of complete and clean combustion with different engine setups. The main benefits are thus lower soot and nitrogen oxides emissions compared to diesel fuel. The facility used in this study is a research engine, where the conditions upstream the machine, the valve timing and the injection parameters are fully adjustable. In fact, the boundary conditions upstream and downstream the engine are freely controlled by a separated supply air plant and by a throttle valve, located at the end of the exhaust pipe. The injection system is common-rail: rail pressure, injection timing and duration are completely adjustable.
Technical Paper

Schlieren and Mie Scattering Visualization for Single-Hole Diesel Injector under Vaporizing Conditions with Numerical Validation

2014-04-01
2014-01-1406
This paper reports an experimental and numerical investigation on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel spray under engine-like conditions. The high pressure diesel spray was investigated in an optically-accessible constant volume combustion vessel for studying the influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio). Measurements were carried out by a high-speed imaging system capable of acquiring Mie-scattering and schlieren in a nearly simultaneous fashion mode using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies were performed at three injection pressures (70, 120, and 180 MPa), 23.9 kg/m3 ambient gas density, and 900 K gas temperature in the vessel.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - AFR and EGR Dilution Effects

2015-09-29
2015-01-2808
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and reduce harmful emissions while maintaining durability. Transforming part of the vehicle fleet to NG is a path to reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Start of Injection and Spark Timing Effects

2015-09-29
2015-01-2813
The increased availability of natural gas (NG) in the United States (US), and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim is to realize fuel cost savings and reduce harmful emissions, while maintaining durability. This is a potential path to help the US reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe; however, this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

Near Nozzle Field Conditions in Diesel Fuel Injector Testing

2015-09-06
2015-24-2470
The measurement of the rate of fuel injection using a constant volume, fluid filled chamber and measuring the pressure change as a function of time due to the injected fluid (the so called “Zeuch” method) is an industry standard due to its simple theoretical underpinnings. Such a measurement device is useful to determine key timing and quantity parameters for injection system improvements to meet the evolving requirements of emissions, power and economy. This study aims to further the understanding of the nature of cavitation which could occur in the near nozzle region under these specific conditions of liquid into liquid injection using high pressure diesel injectors for heavy duty engines. The motivation for this work is to better understand the temporal signature of the pressure signals that arise in a typical injection cycle.
Technical Paper

Correlations of Non-Vaporizing Spray Penetration for 3000 Bar Diesel Spray Injection

2013-09-08
2013-24-0033
Increasing fuel injection pressure has enabled reduction of diesel emissions while retaining the advantage of the high thermal efficiency of diesel engines. With production diesel injectors operating in the range from 300 to 2400 bar, there is interest in injection pressures of 3000 bar and higher for further emissions reduction and fuel efficiency improvements. Fundamental understanding of diesel spray characteristics including very early injection and non-vaporizing spray penetration is essential to improve model development and facilitate the integration of advanced injection systems with elevated injection pressure into future diesel engines. Studies were conducted in an optically accessible constant volume combustion vessel under non-vaporizing conditions. Two advanced high pressure multi-hole injectors were used with different hole diameters, number of holes, and flow rates, with only one plume of each injector being imaged to enable high frame rate imaging.
Technical Paper

Influence of the Nozzle Geometry of a Diesel Single-Hole Injector on Liquid and Vapor Phase Distributions at Engine-Like Conditions

2013-09-08
2013-24-0038
The paper describes an experimental activity on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel at engine-like conditions. The influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio) has been studied by spraying fuel in an optically-accessible constant-volume combustion vessel. A high-speed imaging system, capable of acquiring Mie-scattering and Schlieren images in a near simultaneous fashion mode along the same line of sight, has been developed at the Michigan Technological University using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies have been performed at three injection pressures (70, 120 and 180 MPa), 23.9 kg/m3 ambient gas density and 900 K gas temperature in the vessel.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Nozzle Included Angle Effects

2017-03-28
2017-01-0781
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
Technical Paper

Development of a Transient Spray Cone Angle Correlation for CFD Simulations at Diesel Engine Conditions

2018-04-03
2018-01-0304
The accurate modeling of fuel spray behavior under diesel engine conditions requires well-characterized boundary conditions. Among those conditions, the spray cone angle is important due to its impact on the spray mixing process, flame lift-off locations and subsequent soot formation. The spray cone angle is a highly dynamic variable, but existing correlations have been developed mainly for diesel fuels at quasi-steady state and relatively low injection pressures. The objective of this study was to develop spray cone angle correlations for both diesel and a light-end gasoline fuel over a wide range of diesel-engine operating conditions that are capable of capturing both the transient and quasi-steady state processes. Two important macroscopic characteristics of solid cone sprays, the spray cone angle and spray penetration, were measured using a single-hole heavy-duty injector using two fuels at diesel engine conditions in an optical constant volume vessel.
Technical Paper

Diesel Fuel Injection Control for Optimum Driveability

2000-03-06
2000-01-0265
Performance and refinement are key factors which influence the market acceptance of passenger cars, and consequently in the area of diesel fuel injection control there is increasing pressure for improved driveability. “Driveline shunt” is one important and problematic aspect of driveability, which is also known as “judder”, “chuggle” or “cab-nod”. It has been defined as an objectionable vehicle oscillation which takes place following a rapid throttle input or increase in engine load. This phenomenon is caused by driveline vibrations which can occur as a consequence of variations in engine torque demand. Mathematical modelling and experimentation techniques have been used to establish the behaviour of a fuel injection system, engine and vehicle driveline. Vehicle tests have been conducted in order to relate objective metrics and subjective opinion.
Technical Paper

An Experimental and Modeling Study of Cordierite Traps - Pressure Drop and Permeability of Clean and Particulate Loaded Traps

2000-03-06
2000-01-0476
A model for calculating the trap pressure drop, particulate mass inside the trap and various particulate and trap properties was developed using the steady-state data and the theory developed by Konstandopoulos & Johnson, 1989. Changes were made with respect to the calculation of clean pressure drop, particulate layer porosity and the particulate layer permeability. This model was validated with the data obtained from the steady-state data run with different traps supplied by Corning Inc. The data were collected using the 1988 Cummins L-10 heavy-duty diesel engine using No.2 low sulfur diesel fuel. The three different traps were EX 80 (100 cell density), EX 80 (200 cell density) and EX 66 (100 cell density) all with a 229 mm diameter and 305 mm length. These traps were subjected to different particulate matter loadings at different speeds. The traps were not catalyzed.
Technical Paper

Emissions from a Diesel Vehicle Operated on Alternative Fuels in Copenhagen

1999-10-25
1999-01-3603
A new diesel van with a reference weight of 1661 kg and a pre-chamber engine with a displacement of 2400cc was tested on a chassis dynamometer. The fuel consumption and emissions of carbon monoxide, unburned hydrocarbons, nitrogen oxides, carbon dioxide, particulate matter and associated organic material (SOF) as well as PAH (Polycyclic Aromatic Hydrocarbons) were measured under different driving conditions. The driving patterns used were recorded with a chase car at real traffic conditions on several roads in Copenhagen. The emissions were measured using different kind of diesel fuels as well as RME and biodiesel. CO, CO2, HC, and NOx levels generally decreased with increasing average speed of the driving cycle for all fuels tested. Cold start emissions were generally higher than for warm start.
Technical Paper

An Experimental Study of Active Regeneration of an Advanced Catalyzed Particulate Filter by Diesel Fuel Injection Upstream of an Oxidation Catalyst

2006-04-03
2006-01-0879
Passive regeneration (oxidation of particulate matter without using an external energy source) of particulate filters in combination with active regeneration is necessary for low load engine operating conditions. For low load conditions, the exhaust gas temperatures are less than 250°C and the PM oxidation rate due to passive regeneration is less than the PM accumulation rate. The objective of this research was to experimentally investigate active regeneration of a catalyzed particulate filter (CPF) using diesel fuel injection in the exhaust gas after the turbocharger and before a diesel oxidation catalyst (DOC) and to collect data for extending the MTU 1-D 2-layer model to include the simulation of active regeneration. The engine used in this study was a 2002 Cummins ISM turbo charged 10.8 L heavy duty diesel engine with cooled EGR. The exhaust after-treatment system consisted of a Johnson Matthey DOC and CPF (a CCRT®).
Journal Article

Investigations on Deposit Formation in the Holes of Diesel Injector Nozzles

2011-08-30
2011-01-1924
Current developments in fuels and emissions regulations are resulting in an increasingly severe operating environment for diesel fuel injection systems. The formation of deposits within the holes or on the outside of the injector nozzle can affect the overall system performance. The rate of deposit formation is affected by a number of parameters, including operating conditions and fuel composition. For the work reported here an accelerated test procedure was developed to evaluate the relative importance of some of these parameters in a high pressure common rail fuel injection system. The resulting methodology produced measurable deposits in a custom-made injector nozzle on a single-cylinder engine. The results indicate that fuels containing 30%v/v and 100% Fatty Acid Methyl Ester (FAME) that does not meet EN 14214 produced more deposit than an EN590 petroleum diesel fuel.
Journal Article

An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

2017-03-28
2017-01-0854
Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at a density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGETM framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation.
Technical Paper

Spray-Wall Dynamics of High-Pressure Impinging Combustion

2019-01-15
2019-01-0067
The fuel spray impingement on the piston head and/or chamber often occurs in compact IC engines. The impingement plays one of the key roles in combustion because it affects the air-fuel mixing process. In this study, the impinged combustion has been experimentally investigated to understand the mechanism and dynamics of flame-wall interaction. The experiments were performed in a constant volume combustion chamber over a wide range of ambient conditions. The ambient temperature was varied from 800 K to 1000 K and ambient gas oxygen was varied from 15% to 21%. Diesel fuel was injected with an injection pressure of 150 MPa into ambient gas at a density of 22.8 kg/m3. The natural luminosity technique was applied in the experiments to explore the impinged combustion process. High-speed images were taken using a high-speed camera from two different views (bottom and side). An in-house Matlab program was used to post-process the images.
Journal Article

Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine

2008-10-06
2008-01-2500
Hydrotreating of vegetable oils or animal fats is an alternative process to esterification for producing biobased diesel fuels. Hydrotreated products are also called renewable diesel fuels. Hydrotreated vegetable oils (HVO) do not have the detrimental effects of ester-type biodiesel fuels, like increased NOx emission, deposit formation, storage stability problems, more rapid aging of engine oil or poor cold properties. HVOs are straight chain paraffinic hydrocarbons that are free of aromatics, oxygen and sulfur and have high cetane numbers. In this paper, NOx - particulate emission trade-off and NOx - fuel consumption trade-off are studied using different fuel injection timings in a turbocharged charge air cooled common rail heavy duty diesel engine. Tested fuels were sulfur free diesel fuel, neat HVO, and a 30% HVO + 70% diesel fuel blend. The study shows that there is potential for optimizing engine settings together with enhanced fuel composition.
Technical Paper

Characterization of Partially Stratified Direct Injection of Natural Gas for Spark-Ignited Engines

2015-04-14
2015-01-0937
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) diesel engines to NG fuel and combustion systems (compressed or liquefied). The intention is to realize fuel cost savings and reduce harmful emissions, while maintaining or improving overall vehicle fuel economy. This is a potential path to help the US achieve energy diversity and reduce dependence on crude oil. Traditionally, port-injected, premixed NG spark-ignited combustion systems have been used for medium and heavy duty engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding premixing and extending the lean limits which helps to extend the knock limit.
X