Refine Your Search

Topic

Author

Search Results

Technical Paper

Multi-Zone HVAC Development and Validation with Integrated Heated/Vented Seat Control

2020-04-14
2020-01-1247
Vehicle multi-zone automatic Heating, Venting and Air Conditioning (HVAC) is the advanced form of the traditional air conditioning. The advantage of multi-zone automatic HVAC is that it allows the passengers of a vehicle to set a desired temperature for their own zone within the vehicle compartment. This desired temperature is then maintained by the HVAC system, which determines how best to control the available environment data to provide optimal comfort for the passengers. To achieve overall thermal comfort of the occupants in a vehicle, multi-zone HVAC takes things a step further by adding heated steering wheel and heated/vented seats to the overall HVAC control strategy. The heating and cooling of the occupants by this integrated system is performed by complex control algorithms in form of embedded software programs and Private LIN network. This paper describes the approach and tools used to develop, simulate and validate the multi-zone integrated climate control system.
Journal Article

Automobile Powertrain Sound Quality Development Using a Design for Six Sigma (DFSS) Approach

2015-06-15
2015-01-2336
Automotive companies are studying to add extra value in their vehicles by enhancing powertrain sound quality. The objective is to create a brand sound that is unique and preferred by their customers since quietness is not always the most desired characteristic, especially for high-performance products. This paper describes the process of developing a brand powertrain sound for a high-performance vehicle using the DFSS methodology. Initially the customer's preferred sound was identified and analyzed. This was achieved by subjective evaluations through voice-of-customer clinics using vehicles of similar specifications. Objective data were acquired during several driving conditions. In order for the design process to be effective, it is very important to understand the relationship between subjective results and physical quantities of sound. Several sound quality metrics were calculated during the data analysis process.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Technical Paper

Robust Assessment of Automotive Door Structure by Considering Manufacturing Variations

2020-04-14
2020-01-0910
The automotive door structure experience various static and dynamic loading conditions while going through an opening and closing operation. A typical swing door is attached to the body with two hinges and a check strap. These mechanisms carry the loads while the door is opened. Similarly, while closing the door, the latch/striker mechanism along with the seal around the periphery of the door react all loads. Typically, computer aided engineering (CAE) simulations are performed considering a nominal manufacturing (or build) tolerance condition, that results in one loading scenario. But while assembling the door with the body, the build variations in door mechanisms mentioned above can result in different loading scenarios and it should be accounted for design evaluation. This paper discusses various build tolerances and its effect on door durability performances to achieve a robust door design.
Technical Paper

Parametric Modelling and Performance Analysis of HVAC Defroster Duct Using Robust Optimization Methodology

2020-04-14
2020-01-1250
Nowadays development of automotive HVAC is a challenging task wherein thermal comfort and safety are very critical factors to be met. HVAC system is responsible for the demisting and defrosting of the vehicle’s windshield and for creating/maintaining a pleasing environment inside the cabin by controlling airflow, velocity, temperature and purity of air. Fog or ice which forms on the windshield is the main reason for invisibility and leads to major safety issues to the customers while driving. It has been shown that proper clear visibility for the windshield could be obtained with a better flow pattern and uniform flow distribution in the defrost mode of the HVAC system and defrost duct. Defroster performance has received significant attention from OEMs to meet the specific global performance standards of FMVSS103 and SAE J902. Therefore, defroster performance is seriously taken into consideration during the design of HVAC system and defroster duct.
Technical Paper

Design of Valve Body Integrated Direct Acting Controids

2020-04-14
2020-01-0965
The latest trend in transmission hydraulic controls development ise body integrated direct acting control solenoid, ted by multiple automotive OEMs. The advantages of integrated direct acting control solenoids are key enablers for OEMs to meet more and more stringent fuel economy requirement and competitive environment. In the meantime, there are unique challenges in both designing and manufacturing of such solenoids, due to the fact the solenoid armature can only push the spool valve with limited force and limited stroke. Through analytical methods, this paper explains design guidelines to overcome the challenges and quantifies the impact of design decision to critical functional objectives. Multiple valve design configurations, including both normally low and normally high functionality, are covered in the analysis. Unique manufacturing process concerns are also addressed.
Technical Paper

Acoustic Performance Analysis of Automotive HVAC Duct Designs Using a Lattice-Boltzmann Based Method and Correlation with Hemi-Anechoic Chamber

2020-04-14
2020-01-1263
Acoustic comfort of automotive cabins has progressively become one of the key attributes of passenger comfort within vehicle design. Wind noise and the heating, ventilation, and air conditioning (HVAC) system noise are two of the key contributors to noise levels heard inside the car. The increasing prevalence of hybrid technologies and electrification has an associated reduction in powertrain noise levels. As such, the industry has seen an increasing focus on understanding and minimizing HVAC noise, as it is a main source of noise in the cabin particularly when the vehicle is stationary. The complex turbulent flow path through the ducts, combined with acoustic resonances can potentially lead to significant noise generation, both broadband and tonal.
Technical Paper

Enhancement of Engineering Education through University Competition-Based Events

2006-11-13
2006-32-0049
Engineering education at the University level is enhanced by competition-based projects. The SAE Clean Snowmobile Challenge is a prime example of how competition-based engineering education benefits the small engines industry and improves the engineering talent pool of the nation in general. For the past several decades, SAE has encouraged young engineers to compete in designing off road vehicles (Baja SAE ®), small race cars (Formula SAE ®), remote control airplanes (Aero Design ®), high mileage vehicles (Supermileage ®) and robots (Walking Robot ®). Now a new competition, the SAE Clean Snowmobile Challenge ™ (CSC), based on designing a cleaner and quieter snowmobile has led to a new path for young engineers to explore the challenges of designing engines that emit less pollution and noise. The paper will summarize the results of the most recent Clean Snowmobile Challenge 2006 and document the successes of the past seven years of the Challenge.
Technical Paper

Valve Train Design for a New Gas Exchange Process

2004-03-08
2004-01-0607
The design and testing of the valve train for a new two-stroke diesel engine concept [1,2] is presented. The gas exchange of this process requires extremely fast-acting inlet valves, which constituted a very demanding designing task. A simulation model of the prototype valve train was constructed with commercially available software. The simulation program served as the main tool for optimizing the dynamic behavior of the valve train. The prototype valve train was built according to the simulations and valve acceleration measurements were performed in order to validate the simulation results. The simulations and measurements are presented in detail in this paper.
Technical Paper

Design and Testing of a Single Cylinder, Turbocharged, Four-Stroke Snowmobile with E.F.I. and Catalytic Exhaust Treatment

2002-10-21
2002-01-2761
The successful implementation of a clean, quiet, four-stroke engine into an existing snowmobile chassis has been achieved. The snowmobile is easy to start, easy to drive, and environmentally friendly. The following paper describes the conversion process in detail with actual dynamometer and field test data. The vehicle is partially compliant with the proposed 2010 EPA snowmobile emissions regulations and passes an independently conducted, 74 dBA, full throttle pass-by noise test. The vehicle addresses the environmental issues surrounding snowmobiles and remains economical, with an approximate cost of $6,345.
Technical Paper

Optimal Parameter Calibration for Physics Based Multi-Mass Engine Model

2017-03-28
2017-01-0214
Designing an efficient transient thermal system model has become a very important task in improving fuel economy. As opposed to steady-state thermal models, part of the difficulty in designing a transient model is optimizing a set of input parameters. The first objective in this work is to develop an engine compatible physics-based 1D thermal model for fuel economy and robust control. In order to capture and study the intrinsic thermo-physical nature, both generic “Three Mass” and “Eight Mass” engine models are developed. The models have been correlated heuristically using Simulink. This correlation and calibration process is challenging and time consuming, especially in the case of the 8-mass model. Hence, in this work a Particle Swarm Optimizer (PSO) method has been introduced and implemented on a simple 3-mass and more complex 8-mass engine thermal model in order to optimize the input parameters.
Technical Paper

Optimizing the Rear Fascia Cutline Based On Investigating Deviation Sources of the Body Panel Fit and Finish

2017-03-28
2017-01-1600
A vehicle’s exterior fit and finish, in general, is the first system to attract customers. Automotive exterior engineers were motivated in the past few years to increase their focus on how to optimize the vehicle’s exterior panels split lines quality and how to minimize variation in fit and finish addressing customer and market required quality standards. The design engineering’s focus is to control the deviation from nominal build objective and minimize it. The fitting process follows an optimization model with the exterior panel’s location and orientation factors as independent variables. This research focuses on addressing the source of variation “contributed factors” that will impact the quality of the fit and finish. These critical factors could be resulted from the design process, product process, or an assembly process. An empirical analysis will be used to minimize the fit and finish deviation.
Technical Paper

Thermal Map of an Exhaust Manifold for a Transient Dyno Test Schedule: Development and Test Data Correlation

2018-04-03
2018-01-0126
In an Internal Combustion (IC) Engine, the exhaust manifold has the primary function of channeling products of combustion from cylinder head runners to the emissions system through a collector. Exhaust manifolds must endure severe thermal loads and high strain caused by channeling extremely hot gases and fastener loads, respectively. The combination of these two loads can lead to Thermomechanical Fatigue (TMF) failures after repeated operational cycles if they are not assessed and addressed adequately during the design process. Therefore, it is vital to have a methodology in place to evaluate the life of an engine component (such as the exhaust manifold) using a TMF damage prediction model. To accomplish this, spatial temperature prediction and maximum value attained, as well as temporal distribution, are the most important input conditions.
Technical Paper

Development of the MTU Automatic Shifting Manual Six Speed Transmission

2006-04-03
2006-01-0747
The purpose of this report is to describe the process for the development of the automatically shifting manual transmission control system hardware and software to be used in the MTU Challenge X Equinox, a through-the-road parallel hybrid electric vehicle. The automatically shifting manual transmission was chosen for development, as it combines the ease of use of an automatic transmission with the fuel efficiency of a manual, while eliminating the parasitic losses in the torque converter and the transmission hydraulic pump. This report illustrates the process used to develop the software-in-the loop modeling that was developed for the initial proof of concept. In addition, it describes the development of the control strategy and hardware build for the prototype transmission. To begin the design process research was preformed on existing automatically shifting manuals and manual transmissions in general. From there vehicle subsystems were assembled using Simulink block diagrams.
Technical Paper

A Simulation-Based Approach to Incorporate Uncertainty in Reliability Growth Planning (RGP)

2020-04-14
2020-01-0742
The development of complex engineering systems often encounters various challenges in terms of meeting New Product Development (NPD) assigned budget, launch time, and system performance goals. Most of the NPD processes have been experiencing challenges to meet these goals within an increasingly competitive global market environment. These challenges become more complicated to manage when the development process is long with different sources of uncertainty. Despite decades of industrial experience and academic research efforts in managing NPD processes, it is observed that designing and developing increasingly complex systems, e.g., automotive, is still subjected to significant cost overrun, schedule delays, and functional issues during early design stages. To provide a Reliability Growth Planning (RGP) model, several inputs are required, e.g., the initial reliability estimation, the reliability goal, test recourses, and the duration of the design or test period.
Technical Paper

Design and Optimization of Steering Assembly for Baja ATV Vehicle

2023-04-11
2023-01-0161
The steering assembly is a part of an automotive suspension system that provides control and stability. It provides control of direction, stability, and control over placement of the car. Optimization of the vehicle in weight results in enhanced performance and low fuel consumption, more so for an all-terrain race car. Optimization in this paper loosely refers to weight reduction and achieving the optimum stiffness to weight ratio of each component. This research encompasses various aspects linked to conceptualizing, designing, analysing, optimizing, and finally manufacturing the steering sub-system. Analytical calculations for mechanical design were performed using data from various experiments and jigs. CAD was developed using SolidWorks, and various analyses were performed using Altair HyperWorks. Finite Element Analysis (FEA) was primarily used to build stress plots and locate weak spots aiding optimization.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

2016-04-05
2016-01-0224
To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Technical Paper

Virtual Evaluation of Seat Shake Performance Using Four Poster Shaker

2021-04-06
2021-01-0325
For the designing of world class vehicles, ride comfort is one of the criteria that vehicle manufacturers are constantly trying to improve. The automotive seating system is an important sub-system in a vehicle that contributes to the ride comfort of the vehicle occupants. Seat vibrations are perceived by the occupants and make them feel uncomfortable during driving conditions. These vibrations are majorly transferred from engine and road excitation loads. For road excitation loads, the road testing may not be accurately repeatable, and measurements based on four post shakers are used to assess the discomfort. The major challenges for the vehicle manufactures is the availability of physical prototypes at an early stage of vehicle development and any changes in the design due to test validation leads to huge cost and time.
Technical Paper

Experimental Investigation on the Effects of Design and Control Factors on the Performance and Emissions Characteristics of a Boosted GDI Engine Using Taguchi Method

2021-04-06
2021-01-0466
Mixture formation and combustion dynamics are the primary contributors to the performance and emission characteristics of direct-injected spark ignition (SI) engines. This requires assessing the benefits and tradeoffs of the design and control factors that influence mixing and the subsequent combustion event. In this study, Taguchi's L18 orthogonal array design of experiment (DoE) methodology has been applied to assess contributions and tradeoffs of varied compression ratio, piston bowl design, intake port tumble design, injector spray pattern, injection timing, injection pressure, exhaust gas recirculation (EGR) rate, and intake valve closing timing in a single-cylinder boosted gasoline direct injection (GDI) SI engine. This multiparameter study has been carried out across three speed-load conditions representative of typical automotive application operating ranges.
Technical Paper

Application of Simplified Load Path Models for BIW Development

2019-04-02
2019-01-0614
Simplified load path models (SLMs) of the body in white (BIW) are an important tool in the body structure design process providing a highly flexible, idealized concept model to explore the design space through load path evaluation, material selection, and section optimization with rapid turnaround. In partnership with Altair Engineering, the C123 process was used to create and optimize SLMs for BIW models at FCA US LLC. These models help structures engineers to develop efficient load paths, sections, and joints for improved NVH as ultra-high-strength steels enable thinner gauges throughout the body structure. A few key differences in the SLM modeling method are contrasted to previous simplified BIW modeling methods. One such example is the parameterization of cross sections through response surface models rather than using contemporary finite element descriptions of arbitrary cross sections.
X