Refine Your Search

Topic

Author

Search Results

Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
Journal Article

Instrumentation, Acquisition and Data Processing Requirements for Accurate Combustion Noise Measurements

2015-06-15
2015-01-2284
The higher cylinder peak pressure and pressure rise rate of modern diesel and gasoline fueled engines tend to increase combustion noise while customers demand lower noise. The multiple degrees of freedom in engine control and calibration mean there is more scope to influence combustion noise but this must first be measured before it can be balanced with other attributes. An efficient means to realize this is to calculate combustion noise from the in-cylinder pressure measurements that are routinely acquired as part of the engine development process. This publication reviews the techniques required to ensure accurate and precise combustion noise measurements. First, the dynamic range must be maximized by using an analogue to digital converter with sufficient number of bits and selecting an appropriate range in the test equipment.
Journal Article

Powerplant NVH Decision Making Using Combined Airborne and Structureborne Noise Sources

2015-06-15
2015-01-2289
Powerplant NVH decisions are sometimes made looking only at how the change impacts either the source radiated noise level or the source vibration. Depending on the engine configuration, those can be good approximations, but they can also be very misleading. By combining both noise sources into a vehicle equivalent noise level a much better analysis can be made of the impact of any proposed design change on the customer perceived loudness. This paper will investigate several different scenarios and identify how the airborne and the structureborne paths combine for I4, V6 and V8 engine configurations. Similar relationships will be shown for path as well as the source contributions.
Journal Article

Effect of Aerodynamically Induced Pre-Swirl on Centrifugal Compressor Acoustics and Performance

2015-06-15
2015-01-2307
The effect of aerodynamically induced pre-swirl on the acoustic and performance characteristics of an automotive centrifugal compressor is studied experimentally on a steady-flow turbocharger facility. Accompanying flow separation, broadband noise is generated as the flow rate of the compressor is reduced and the incidence angle of the flow relative to the leading edge of the inducer blades increases. By incorporating an air jet upstream of the inducer, a tangential (swirl) component of velocity is added to the incoming flow, which improves the incidence angle particularly at low to mid-flow rates. Experimental data for a configuration with a swirl jet is then compared to a baseline with no swirl. The induced jet is shown to improve the surge line over the baseline configuration at all rotational speeds examined, while restricting the maximum flow rate. At high flow rates, the swirl jet increases the compressor inlet noise levels over a wide frequency range.
Technical Paper

A Development Process to Improve Vehicle Sound Quality

1991-05-01
911079
Vehicle sound quality has become an important basic performance requirement. Traditionally, automobile noise studies were focused on quietness. It is now necessary for the automobile to be more than quiet. The sound must be pleasing. This paper describes a development process to improve both vehicle noise level and sound quality. Formal experimental design techniques were utilized to quantify various hardware effects. A-weighted sound pressure level, Speech Intelligibility, and Composite Rating of Preference were the three descriptors used to characterize the vehicle's sound quality. Engineering knowledge augmented with graphical and statistical techniques were utilized during data analysis. The individual component contributions to each of the sound quality descriptors were also quantified in this study.
Technical Paper

Application of Signature Analysis and Operating Deflection Shapes to Identify Interior Noise Sources in an Excavator

2007-05-15
2007-01-2427
The objective of this study was to identify and gain an understanding of the origins of noise in a commercial excavator cab. This paper presents the results of two different tests that were used to characterize the vibration and acoustic characteristics of the excavator cab. The first test was done in an effort to characterize the vibration properties of the cab panels and their associated contribution to the noise level inside the cab. The second set, of tests, was designed to address the contribution of the external airborne noise produced by the engine and hydraulic pump to the overall interior noise. This paper describes the test procedures used to obtain the data for the signature analysis, operational deflection shapes (ODS), and sound diagnosis analysis. It also contains a discussion of the analysis results and an inside look into the possible contributors of key frequencies to the interior noise in the excavator cab.
Technical Paper

Root Cause Identification and Methods of Reducing Rear Window Buffeting Noise

2007-05-15
2007-01-2402
Rear Window Buffeting (RWB) is the low-frequency, high amplitude, sound that occurs in many 4-door vehicles when driven 30-70 mph with one rear window lowered. The goal of this paper is to demonstrate that the mechanisms of RWB are similar to that of sun roof buffeting and to describe the results of several actions suspected in contributing to the severity of RWB. Finally, the results of several experiments are discussed that may lend insight into ways to reduce the severity of this event. A detailed examination of the side airflow patterns of a small Sport Utility Vehicle (SUV) shows these criteria exist on a small SUV, and experiments to modify the SUV airflow pattern to reduce RWB are performed with varying degrees of success. Based on the results of these experiments, design actions are recommended that may result in the reduction of RWB.
Technical Paper

Development and Validation of an Acoustic Encapsulation to Reduce Diesel Engine Noise

2007-05-15
2007-01-2375
This paper describes a study to demonstrate the feasibility of developing an acoustic encapsulation to reduce airborne noise from a commercial diesel engine. First, the various sources of noise from the engine were identified using Nearfield Acoustical Holography (NAH). Detailed NAH measurements were conducted on the four sides of the engine in an engine test cell. The main sources of noise from the engine were ranked and identified within the frequency ranges of interest. Experimental modal analysis was conducted on the oil pan and front cover plate of the engine to reveal correlations of structural vibration results with the data from the NAH. The second phase of the study involved the design and fabrication of the acoustical encapsulation (noise covers) for the engine in a test cell to satisfy the requirements of space, cost and performance constraints. The acoustical materials for the enclosure were selected to meet the frequency and temperature ranges of interest.
Technical Paper

Engineering Challenges with Vehicle Noise and Vibration in Product Development

2007-05-15
2007-01-2434
Vehicle noise and vibration (NVH) is among the important attributes of the vehicle. This attribute has to be designed for in the product development process. This produces challenges that are usually overlooked by researchers in the field. These challenges are assessed in this manuscript. The emphasis here is on the NVH phenomenon at the vehicle level. Little work is being done to study the vehicle noise and vibration from a system or customer perspective. This manuscript brings to the attention of researchers and the NVH community at large the various NVH challenges that constitute complexities to the development engineer and may deserve closer attention.
Technical Paper

Analytical Simulation of the Effects of Noise Control Treatments on an Excavator Cab using Statistical Energy Analysis

2007-05-15
2007-01-2315
The objective of this study was to utilize Statistical Energy Analysis (SEA) to simulate the effects of a variety of noise control treatments on the interior sound pressure level (SPL) of a commercial excavator cab. In addition, the effects of leaks on the SPL of the excavator cab were also investigated. This project was conducted along with various tests that were used to determine the inputs needed to accurately represent the loads that the cab experienced during operation. This paper explains the how the model was constructed, how the loads were applied to the model, the results that were obtained from application of treatments, and a study of the effects of introducing leaks to the cab structure in the SEA model.
Technical Paper

Power Steering Noise Characterization and Evaluation

2008-03-30
2008-36-0550
Each more the consumer uses the vehicle noise, vibration, and harshness (NVH) attributes to define the vehicle model when purchasing a car, so the sound quality development is very important to guarantee the automaker success in a competitive market. Several vehicle components contribute to the consumer sound quality perception, as engine, gearbox and exhaust systems. So those components improvement is necessary in order to enrich the sound perception. In this article will be developed a case study that evaluates the contribution and the characteristics of the irradiated noise from the power steering system, which was classified as moan, whine and hiss noise, defines objectively each phenomena and evaluate the proposed systems.
Technical Paper

Determination of Source Contribution in Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2228
As noise concerns for snowmobiles become of greater interest for governing bodies, standards such as SAE J192 are implemented for regulation. Specific to this pass-by noise standard, and unlike many other pass-by tests, multiple non-standardized test surfaces are allowed to be used. Manufacturers must understand how the machines behave during these tests to know how to best improve the measured noise levels. Data is presented that identifies the contributions of different sources for different snowmobiles on various test surface conditions. Adaptive resampling for Doppler removal, frequency response functions and order tracking methods are implemented in order to best understand what components affect the overall measurement during the pass-by noise test.
Technical Paper

Modeling Interior Noise in Off-Highway Trucks using Statistical Energy Analysis

2009-05-19
2009-01-2239
The objective of this project was to model and study the interior noise in an Off-Highway Truck cab using Statistical Energy Analysis (SEA). The analysis was performed using two different modeling techniques. In the first method, the structural members of the cab were modeled along with the panels and the interior cavity. In the second method, the structural members were not modeled and only the acoustic cavity and panels were modeled. Comparison was done between the model with structural members and without structural members to evaluate the necessity of modeling the structure. Correlation between model prediction of interior sound pressure and test data was performed for eight different load conditions. Power contribution analysis was performed to find dominant paths and 1/3rd octave band frequencies.
Technical Paper

Diesel Combustion Mode Switching - A Substantial NVH Challenge

2009-05-19
2009-01-2080
Tier 2, bin 5 diesel engines may use multiple combustion modes to achieve stringent emissions requirements. Unfortunately, switching between different combustion modes can cause step changes in noise that will be unacceptable to consumers. In this paper, several sound quality metrics are evaluated for their ability to quantify the NVH issues that arise during a rich pulse event. In addition, techniques are presented that allow an engine developer to reduce the NVH effects caused by changing combustion modes. Careful calibration tuning in close cooperation with performance and emissions development engineers is required to solve noise problems that arise from combustion mode switching events, since an NVH improvement may often come at the expense of a performance or emissions issue.
Technical Paper

Contribution of sound package components to airborne attenuation

2010-10-06
2010-36-0328
In South America and other emerging markets sound package development is limited by the cost and weight of its components. Reaching the right balance between cost and a good NVH performance provides an important competitive advantage, therefore any achieved design opportunities can be replicated to other vehicle lines and markets. In this work the main noise transmission paths are verified by evaluating the contribution of sound package components to noise attenuation in two cases, initially from the tire contact patch through vehicle body to a number of positions within the vehicle interior and, next, from the engine compartment, by placing a High Frequency Sound Source (HFSS) at engine faces to the same vehicle interior positions. The main objective is to optimize sound package distribution and to prioritize which areas should have the sound package reinforced in order to improve Tire and Engine noise reduction.
Technical Paper

Gear Whine Reduction for a New Automatic Transmission

2001-04-30
2001-01-1506
Gear whine in 1st and 2nd gears in a new rear wheel drive automatic transmission was identified as a potential customer dis-satisfier. Improvements to the vehicle system were implemented, but did not sufficiently reduce the noise. CAE modeling and hardware testing were used for gear tooth optimization, transmission system, driveline, and vehicle system studies. The planetary gears were re-designed with increased contact ratio, and significant interior noise reduction was achieved; but some vehicles still had excessive noise due to gear parameter variability from multiple sources. Using a DOE and statistical studies, a set of gear parameter targets were identified within the tolerances of the design, which achieved the program objectives for noise.
Technical Paper

Analytical and Experimental Techniques in Solving the Plastic Intake Manifold NVH

2001-04-30
2001-01-1544
The intent of this paper is to summarize the work of the V8 power plant intake manifold radiated noise study. In a particular V8 engine application, customer satisfaction feedback provided observations of existing unpleasant noise at the driver's ear. A comprehensive analysis of customer data indicated that a range from 500 to 800 Hz suggests a potential improvement in noise reduction at the driver's ear. In this study the noise source was determined using various accelerometers located throughout the valley of the engine and intake manifold. The overall surface velocity of the engine valley was ranked with respect to the overall surface velocity of the intake manifold. An intensity mapping technique was also used to determine the major component noise contribution. In order to validate the experimental findings, a series of analysis was also conducted. The analysis model included not only the plastic intake manifold, but also the whole powertrain.
Technical Paper

Laminate Dash Ford Taurus Noise and Vibration Performance

2001-04-30
2001-01-1535
Mastic material, constrained or non-constrained with doublers, is the traditional method in adding vibrational damping to a steel structure with the goal of reducing panel vibration and radiated sound. With the use of laminated vibration damped steel (LVDS), Ford has been able to reduce the dash panel vibration and optimize sound package design for powertrain noise attenuation. These NVH benefits are presented as the result of a study completed with a laminated dash on a Ford Taurus.
Technical Paper

Vehicle Wind Noise Analysis Using a SEA Model with Measured Source Levels

2001-04-30
2001-01-1629
A series of tests have been performed on a production vehicle to determine the characteristics of the external turbulent flow field in wind tunnel and road conditions. Empirical formulas are developed to use the measured data as source levels for a Statistical Energy Analysis (SEA) model of the vehicle structural and acoustical responses. Exterior turbulent flow and acoustical subsystems are used to receive power from the source excitations. This allows for both the magnitudes and wavelengths of the exterior excitations to be taken into account - a necessary condition for consistently accurate results. Comparisons of measured and calculated interior sound levels show good correlation.
Technical Paper

Frictional and Acoustic Behavior of Automotive Interior Polymeric Material Pairs Under Environmental Conditions

2001-04-30
2001-01-1550
As automotive manufacturers continue to increase their use of thermoplastics for interior and exterior components, there is a likelihood of squeaks due to material contacts. To address this issue, Ford's Body Chassis NVH Squeak and Rattle Prevention Engineering Department has developed a tester that can measure friction, and any accompanying audible sound, as a function of sliding velocity, normal load, surface roughness, and environmental factors. The Ford team has been using the tester to address manufacturing plant issues and to develop a database of polymeric material pairings that will be used as a guide for current and future designs to eliminate potential noise concerns. Based upon the database, along with a physical property analysis of the various plastic (viscoelastic) materials used in the interior, we are in the process of developing an analytical model which will be a tool to predict frictional behavior.
X