Refine Your Search



Search Results

Technical Paper

Drawbeads in Sheet Metal Stamping - A Review

The paper reviews the role of drawbeads in sheet metal stamping. The design of drawbeads is discussed in depth, with treatment of different bead cross sections, bead end shapes, and bead materials. International standards and practices are included. This is followed by the historical development of the modeling of the drawbead restraining force, starting with basic equilibrium approaches, and leading to the use of the finite element method which permits the study of drawbead effects on sheet metal flow in three dimensions. Finally, the potential of active drawbeads is described based upon ongoing research which is directed toward closed-loop computer control of the stamping process through adjustment of the drawbead penetration.
Technical Paper

Process Control Standards for Technology Development

Engineering new technology and products challenges managers to balance design innovation and program risk. To do this, managers need methods to judge future results to avoid program and product disasters. Besides the traditional prediction tools of schedule, simulations and “iron tests”, process control standards (with measurements) can also be applied to the development programs to mitigate risks. This paper briefly discusses the theory and case history behind some new process control methods and standards currently in place at Caterpillar's Electrical & Electronics department. Process standards reviewed in this paper include process mapping, ISO9001, process controls, and process improvement models (e.g. SEI's CMMs.)
Technical Paper

Comparison of Single Gear Tooth and Cantilever Beam Bending Fatigue Testing of Carburized Steel

The bending fatigue performance of gears, cantilever beam specimens, and notched-axial specimens were evaluated and compared. Specimens were machined from a modified SAE-4118 steel, gas-carburized, direct-quenched and tempered. Bending fatigue specimens were characterized by light metallography to determine microstructure and prior austenite grain size, x-ray analysis for residual stress and retained austenite measurements, and scanning electron microscopy to evaluate fatigue crack initiation, propagation and overload. The case and core microstructures, prior austenite grain sizes and case hardness profiles from the various types of specimens were similar. Endurance limits were determined to be about 950 MPa for both the cantilever beam and notched-axial fatigue specimens, and 1310 MPa for the single gear tooth specimens.
Technical Paper

Development of a Fiber Reinforced Aluminum Piston for Heavy Duty Diesel Engines

This paper discusses a joint customer-supplier program intended to further develop the ability to design and apply aluminum alloy pistons selectively reinforced with ceramic fibers for heavy duty diesel engines. The approach begins with a comprehensive mechanical properties evaluation of base and reinforced material. The results demonstrated significant fatigue strength improvement due to fiber reinforcement, specially at temperatures greater than 300°C. A simplified numerical analysis is performed to predict the temperature and fatigue factor values at the combustion bowl area for conventional and reinforced aluminum piston designs for a 6.6 liter engine. It concludes that reinforced piston have a life expectation longer than conventional aluminum piston. Structural engine tests under severe conditions of specific power and peak cylinder pressure were used to confirm the results of the cyclic properties evaluation and numerical analysis.
Technical Paper

A 2-D Computational Model Describing the Flow and Filtration Characteristics of a Ceramic Diesel Particulate Trap

A 2-D computational model was developed to describe the flow and filtration processes, in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state trap loading, as well as the transient behavior of the flow and filtration processes. The theoretical model includes the effect of a copper fuel additive on trap loading and transient operation. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations. The filtration theory incorporated in the time dependent numerical code included the diffusion, inertia, and direct interception mechanisms. Based on a measured upstream particle size distribution, using the filtration theory, the downstream particle size distribution was calculated. The theoretical filtration efficiency, based on particle size distribution, agreed very well (within 1%) with experimental data for a number of different cases.
Technical Paper

Machinability of As-Compacted P/M Parts: Effect of Material Chemistry

Since the advent of P/M technology as a near net shape production process, millions of mechanical components of various shapes and sizes have been produced. Although P/M continues to be one of the fast growing shaping processes, it suffers from the inability to produce intricate geometry's such as internal tapers, threads or recesses perpendicular to pressing direction. In such cases application of machining as a secondary forming operation becomes the preferred alternative. However, machining of P/M parts due to their inherent porosity is known to decrease tool life and increase tool chatter and vibration. Consequently, several attempts have been made to improve the machinability of P/M materials by either addition of machinability enhancing elements such as sulfur, calcium, tellurium, selenium, etc., or by resin impregnation of P/M parts.
Technical Paper

Overview - Painted Aluminum Wheels

This paper discusses the recent growth in aluminum wheel popularity and the problems associated with maintaining the wheel's appearance and corrosion protection. The various options in wheel coatings are then described as well as the adverse wheel environment. Finally, the variables affecting wheel corrosion resistance are explained and the testing that is undertaken to evaluate the performance characteristics of the wheel coating.
Technical Paper

Cell Balancing Algorithm Verification through a Simulation Model for Lithium Ion Energy Storage Systems

To support the market introduction of lithium ion energy storage systems for HEV and EREV applications, a process and tool was developed to expedite the verification of the lithium-ion cell balancing system across differing usage scenarios and cell imbalance rates. Presented is an overview of the cell imbalance analysis methodology and tool used in the development and verification of General Motors cell balancing systems. The use of this analysis methodology and tool has allowed for a cell balancing system optimization that would not have been possible with the use of actual energy storage systems because of the magnitude of lab or vehicle time required to execute the array of tests necessary to comprehend the large number of factors than can influence balancing.
Technical Paper

Calculations of Wind Tunnel Circuit Losses and Speed with Acoustic Foams

The GM Aerodynamics Laboratory (GMAL) was modified in 2001 to reduce the background noise level and provide a semi-anechoic test section for wind noise testing. The walls and ceiling of the test section were lined with acoustic foam and foam-filled turning vanes were installed in the corners. Portions of the wind tunnel circuit were also treated with fiberglass material covered by perforated sheet metal panels. High skin drag due to roughness of the foam surfaces, along with high blockage due to the large turning vanes, increased the wind tunnel circuit losses so that the maximum wind speed in the test section was reduced. The present study calculates the averaged total pressure losses at three locations to evaluate the reductions in skin drag and blockage from proposed modifications to the circuit, which were intended to increase the test section wind speed without compromising noise levels.
Technical Paper

Forming Limit Curves for the AA5083 Alloy under Quick Plastic Forming Conditions

Forming Limit Curves (FLCs) were developed for the 5083 aluminum alloy at conditions simulating high temperature processes such as superplastic and quick plastic forming. Sheet samples were formed at 450 °C and at a constant strain rate of 5x10-3 s-1, by free bulging into a set of elliptical die inserts with different aspect ratios. Friction-independent formability diagrams, which distinguish between the safe and unsafe deformation zones, were constructed. Although the formability diagrams were confined to the biaxial strain region (right side quadrant of an FLD), the elliptical die insert methodology provides formability maps under conditions where traditional mechanical stretching techniques are limited.
Technical Paper

Automotive Materials Engineering Challenges and Solutions for the Use of Ethanol and Methanol Blended Fuels

Economic market forces and increasing environmental awareness of gasoline have led to interest in developing alternatives to gasoline, and extending the current global supply for transportation fuels. One viable strategy is the use of alternative alcohol fuels for combustion engines, with ethanol and methanol in various concentration ranges proposed and in-use. Utilizing and citing data from this review, a comprehensive overview of the materials selection and engineering challenges facing metals, plastics and elastomers are presented. The engineering approach and solution-sets discussed will focus on production feasibility and implementation. The effects from the fuel chemistry and quality of fuel ethanol produced on the related vehicle components are discussed.
Technical Paper

The Modified Martempering and its Effect on the Impact Toughness of a Cold Work Tool Steel

The so-called Modified Martempering discussed in this work differs from the standard martempering by that the temperature of the quenching bath is below the Ms point. In spite of the fact the lower temperature increases the severity of quenching, this also usually avoids the bainite formation, and by this reason, it is possible to make a fair comparison between different processes, which result in different microstructures. The present study shows the results in terms of mechanical properties, impact resistance in special of a cold work tool steel class, after being heat treated by the isothermal modified martempering process, as well as a comparison with the conventional quenching and tempering process and the austempering as well.
Technical Paper

An Approach of the Engine Cylinder Block Material

The increasing demand for energy savings in cars of high production volume, especially those classified as emerging market vehicles, has led the automotive industry to focus on several strategies to achieve higher efficiency levels from their systems and components. One of the most diffuse initiatives is reducing weight through the application of the so-called light alloys. An engine cylinder block can contribute nearly two percent of the vehicle's total mass. Special attention and soon repercussion are given when someone decides to apply a light alloy such as the aluminum to this component. Nonetheless, it is known that peculiarities in terms of physical, chemical and mechanical properties, due to the material nature, associated with regional market characteristics make the initial feasibility analysis study definitely one of the most important stages for the material choice decision.
Technical Paper

Enhancing Mechanical Properties of Ductile Cast Iron Conrods through Different Heat Treatments

The Austempering heat treatment is a well-known solution to improve the mechanical properties of ductile cast irons, therefore being referred as 'ADI' (Austempered Ductile Iron). The improved mechanical properties of ADI's with respect to conventional ductile iron is attributed to its resulting microstructure, which contains mainly carbide-free bainite with stabilized retained austenite. More recently, ductile cast irons were submitted to another heat treatment, known as 'Quenching and Partitioning' (Q&P). In this case, the ductile cast iron is austenitized, quenched to a temperature between Mf and Ms temperatures and subsequently heated to a temperature above Ms in order to partition the carbon from the martensite to the remaining austenite. The resulting microstructure comprises mainly low carbon martensite, austenite (stabilized by the carbon partition) and carbide-free bainite. Such microstructure resulted in equal or better properties than ADI.
Technical Paper

Noise and Vibration Measurement Methods for Large Diameter Single-Piece Aluminum Propeller Shafts

This paper describes recently developed test methods and instrumentation to address the specific noise and vibration measurement challenges posed by large-diameter single-piece tubular aluminum propeller (prop) shafts with high modal density. The prop shaft application described in this paper is a light duty truck, although the methods described are applicable to any rotating shaft with similar dynamic properties. To provide a practical example of the newly developed methods and instrumentation, impact FRF data were acquired in-situ for two typical prop shafts of significantly different diameter, in both rotating and stationary conditions. The example data exhibit features that are uniquely characteristic of large diameter single-piece tubular shafts with high modal density, including the particular effect of shaft rotation on the measurements.
Technical Paper

Vibrational and Sound Radiation Properties of a Double Layered Diesel Engine Gear Cover

The introduction of a thin fluid layer between two layers of sheet metal offers a highly effective and economical alternative to the use of constrained viscoelastic damping layers in sheet metal structures. A diesel engine gear cover, which is constructed of two sheet metal sections spot welded together, takes advantage of fluid layer damping to produce superior vibration and sound radiation performance. In this paper, the bending of a double layered plate coupled through a thin fluid layer is modeled using a traveling wave approach which results in a impedance function that can be used to assess the vibration and sound radiation performance of practical double layered plate structures. Guided by this model, the influence of fluid layer thickness and inside-to-outside sheet thickness is studied.
Technical Paper

Springback Prediction Using Combined Hardening Model

The main objective of this paper is to simulate the springback using combined kinematic/isotropic hardening model. Material parameters in the hardening model are identified by an inverse method. Three-point bending test is conducted on 6022-T4 aluminum sheet. Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves is generated with the material parameters found in this way, which can be used with other plastic models. ABAQUS/Standard 5.8, which has the combined isotropic/kinematic hardening model, is used to simulate draw-bend of 6022-T4 series aluminum sheet. Absolute springback angles are predicted very accurately.
Technical Paper

Finite Difference Heat Transfer Model of a Steel-clad Aluminum Brake Rotor

This paper describes the heat transfer model of a composite aluminum brake rotor and compares the predicted temperatures to dynamometer measurements taken during a 15 fade stop trial. The model is based on meshed surface geometry which is simulated using RadTherm software. Methods for realistically modeling heat load distribution, surface rotation, convection cooling and radiation losses are also discussed. A comparison of the simulation results to the dynamometer data shows very close agreement throughout the fade stop trial. As such, the model is considered valid and will be used for further Steel Clad Aluminum (SCA) rotor development.
Technical Paper

Magnesium Powertrain Mount Brackets: New Application of Material Being used in this Sub-System for Vehicle Mass Reduction

The need for fuel economy gains is crucial in todays automotive market. There is also growing interest and knowledge of greenhouse gases and their effect on the environment. Paulstra's magnesium powertrain brackets were a solution that was presented not just to reduce the weight of the engine mounting system (which was already under its weight target before magnesium introduction), but in response of the OEM's desire to further reduce the weight of the vehicle for CAFE and weight class impact. This new engine mounting system has three powertrain mount brackets that are high-pressure die cast AZ91D magnesium alloy. This paper will show that these brackets to have a dramatic weight reduction compared to the standard aluminum die-cast material that they replaced. This paper describes the process of approval: concept and material sign-off by the OEM, FEA for strength and modal performance, corrosion, and the final product.
Technical Paper

Recycling Study of Post-Consumer Radiator End Caps

In June 1997, the Vehicle Recycling Partnership (VRP) and the American Plastics Council (APC) asked MBA Polymers to conduct a study to determine the technical and economic feasibility of recovering metals and plastics from end-of-life radiator end caps (RECs). The VRP worked with the Institute of Scrap Recycling Industries (ISRI) to obtain samples of RECs from two metal recycling companies, SimsMetal America and Aaron Metals. MBA performed its standard Recyclability Assessment on the materials, which included a detailed density and material characterization study and an actual processing study using its pilot processing line. It was found that the polyamide from RECs could be recovered in reasonably high yield and purity using tight density separations. The recycling of the REC samples used for this study generated about 40% nonferrous metal, 19% mixed ferrous and nonferrous metal and about 20% polyamide flakes.