Refine Your Search

Topic

Author

Search Results

Journal Article

Effect of Regenerative Braking on Foundation Brake Performance

2010-10-10
2010-01-1681
Regenerative braking is one of the key enablers of improved energy efficiency and extension of driving range in parallel and series hybrid, and electric-only vehicles. It is still used in conjunction with friction brakes, due to the enormous amount of energy dissipated in maximum effort stops (and the lack of a competitive alternate technology to accommodate this power level), and to provide braking when on-board energy storage/dissipation devices cannot store enough energy to support braking. Although vehicles equipped with regenerative braking are becoming more and more commonly available, there is little published research on what the dramatic reduction in friction brake usage means to the function of the friction brakes themselves. This paper discusses -with supporting data from analysis and physical tests - some of the considerations for friction brakes related to usage on vehicles with regenerative braking, including corrosion, off-brake wear, and friction levels.
Journal Article

An Applied Approach for Large-Scale Multibody Dynamics Simulation and Machine-Terrain Interaction

2008-04-14
2008-01-1101
Virtual Product Development (VPD) is a key enabler in CAE and depends upon accurate implementation of multibody dynamics. This paper discusses the formulation and implementation of a large-scale multibody dynamics simulation code. In the presented formulation, the joint variables are used as the generalized coordinates and spatial algebra is used to formulate the system equations of motion. Although the presented formulation utilizes the joint variables as the generalized coordinates, closed-loop mechanisms can be easily modeled using impeded constraints. Baumgart stabilization approach is used to eliminate the constraint violations without using the expensive Newton-Raphson iterations. Integrated rigid and flexible body dynamic simulation allows accurate prediction of structural loads, stress, and strains. Both modal and nodal flexible body approaches are discussed in the paper.
Journal Article

Co-Simulation of Multiple Software Packages for Model Based Control Development and Full Vehicle System Evaluation

2012-04-16
2012-01-0951
Recent advancements in simulation software and computational hardware make it realizable to simulate a full vehicle system comprised of multiple sub-models developed in different modeling languages. The so-called, co-simulation allows one to develop a control strategy and evaluate various aspects of a vehicle system, such as fuel efficiency and vehicle drivability, in a cost-effective manner. In order to study the feasibility of the synchronized parallel processing in co-simulation this paper presents two co-simulation frameworks for a complete vehicle system with multiple heterogeneous subsystem models. In the first approach, subsystem models are co-simulated in a serial configuration, and the same sub-models are co-simulated in a parallel configuration in the second approach.
Technical Paper

Eliminating Caliper Piston Knock Back In High Performance Vehicles

2006-10-08
2006-01-3197
Powerful vehicles that are adequately designed to corner at high speeds can generate very high lateral forces at tire-road interface. These forces are counter balanced by chassis, suspension and brake components allowing the vehicle to confidently maneuver around a corner. Although these components may not damage under such high cornering loads, elastic deflections can significantly alter a vehicles performance. One such phenomenon is increased brake pedal travel, to engage brakes, after severe cornering maneuvers. Authors of this paper have worked together to solve exactly this problem on a very powerful luxury segment car.
Journal Article

Brake System and Subsystem Design Considerations for Race Track and High Energy Usage Based on Fade Limits

2008-04-14
2008-01-0817
The friction material is arguably at the heart of any brake system, with its properties taking one of the most important roles in defining its performance characteristics. High performance applications, such as race track capable brake systems in high powered vehicles, exert considerable stress on the friction materials, in the form of very high heat flux loads, high clamp and brake torque loads, and high operating temperatures. It is important, for high performance applications, to select capable friction materials, and furthermore, it is important to understand fully what operating conditions the friction material will face in the considered application.
Technical Paper

The Immersed Boundary CFD Approach for Complex Aerodynamics Flow Predictions

2007-04-16
2007-01-0109
Standard CFD methods require a mesh that fits the boundaries of the computational domain. For a complex geometry the generation of such a grid is time-consuming and often requires modifications to the model geometry. This paper evaluates the Immersed Boundary (IB) approach which does not require a boundary-conforming mesh and thus would speed up the process of the grid generation. In the IB approach the CAD surfaces (in Stereo Lithography -STL- format) are used directly and this eliminates the surface meshing phase and also mitigates the process of the CAD cleanup. A volume mesh, consisting of regular, locally refined, hexahedrals is generated in the computational domain, including inside the body. The cells are then classified as fluid, solid and interface cells using a simple ray-tracing scheme. Interface cells, correspond to regions that are partially fluid and are intersected by the boundary surfaces.
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

2008-04-14
2008-01-0320
One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Technical Paper

Model Based Design Accelerates the Development of Mechanical Locomotive Controls

2010-10-05
2010-01-1999
Smaller locomotives often use mechanical transmissions instead of diesel-electric drive systems typically used in larger locomotives. This paper discusses how Model Based Design was used to develop the complete drive train control system for a 24 ton sugar cane locomotive. A complete MATLAB Simulink machine model was built to fully test and verify the shift control logic, traction control, vehicle speed limiting, and braking control for this locomotive application before it was commissioned. The model included the engine, torque converter, planetary transmission, drive line, and steel on steel driving surface. Simulation was used to debug all control code and test and refine control strategies so that the initial field commissioning in remote Australia was executed very quickly with minimal engineering support required.
Technical Paper

Brake Response Time Measurement for a HIL Vehicle Dynamics Simulator

2010-04-12
2010-01-0079
Vehicle dynamics simulation with Hardware In the Loop (HIL) has been demonstrated to reduce development and validation time for dynamic control systems. For dynamic control systems such as Anti-lock Braking System (ABS) and Electronic Stability Control (ESC), an accurate vehicle dynamics performance simulation system requires the Electronic Brake Control Module (EBCM) coupled with the vehicles brake system hardware. This kind of HIL simulation-specific software tool can further increase efficiency by means of automation and optimization of the development and validation process. This paper presents a method for HIL vehicle dynamics simulator optimization through Brake Response Time (BRT) correlation. The paper discusses the differences between the physical vehicle and the HIL vehicle dynamics simulator. The differences between the physical and virtual systems are used as factors in the development of a Design Of Experiment (DOE) quantifying HIL simulator performance.
Technical Paper

A Robust Procedure for Convergent Nonparametric Multivariate Metamodel Design

2004-03-08
2004-01-1127
Fast-running metamodels (surrogates or response surfaces) that approximate multivariate input/output relationships of time-consuming CAE simulations facilitate effective design trade-offs and optimizations in the vehicle development process. While the cross-validated nonparametric metamodeling methods are capable of capturing the highly nonlinear input/output relationships, it is crucial to ensure the adequacy of the metamodel error estimates. Moreover, in order to circumvent the so-called curse-of-dimensionality in constructing any nonlinear multivariate metamodels from a realistic number of expensive simulations, it is necessary to reliably eliminate insignificant inputs and consequently reduce the metamodel prediction error by focusing on major contributors. This paper presents a robust data-adaptive nonparametric metamodeling procedure that combines a convergent variable screening process with a robust 2-level error assessment strategy to achieve better metamodel accuracy.
Technical Paper

Material Damping Properties: A Comparison of Laboratory Test Methods and the Relationship to In-Vehicle Performance

2001-04-30
2001-01-1466
This paper presents the damping effectiveness of free-layer damping materials through standard Oberst bar testing, solid plate excitation (RTC3) testing, and prediction through numerical schemes. The main objective is to compare damping results from various industry test methods to performance in an automotive body structure. Existing literature on laboratory and vehicle testing of free-layer viscoelastic damping materials has received significant attention in recent history. This has created considerable confusion regarding the appropriateness of different test methods to measure material properties for damping materials/treatments used in vehicles. The ability to use the material properties calculated in these tests in vehicle CAE models has not been extensively examined. Existing literature regarding theory and testing for different industry standard damping measurement techniques is discussed.
Technical Paper

An Integrated Stochastic Design Framework Using Cross-Validated Multivariate Metamodeling Methods

2003-03-03
2003-01-0876
An integrated stochastic design framework that facilitates practical applications involving time-consuming CAE simulations is described. The probabilistic performance measure that addresses stochastic uncertainties in CAE modeling and simulations is used to support design decision-making. Two enabling metamodeling methods using cross-validated radial basis functions (CVRBF) and a corresponding uniform sampling method are introduced to approximate highly nonlinear CAE model input/output relationships. A vehicle restraint system example is used to demonstrate the effectiveness of the proposed framework and enabling techniques.
Technical Paper

Application of CAEBAT System Approach for a Liquid-Cooled Automotive Battery Pack

2016-04-05
2016-01-1205
As one of many pack-level battery simulation approaches developed within the General Motors-led Computer-Aided Engineering of Automotive Batteries (CAEBAT) Phase 1 project, the system approach treats the entire battery pack as a dynamic system which includes multiple engineering disciplines for simulation. It is the most efficient approach of all the CAEBAT battery pack-level approaches in terms of computational time and resources. This paper reports the application of the system approach for a 24-cell liquid-cooled prototype battery pack. It also summarizes the verification of the approach by comparing the simulation results with the measurement data. The results using the system approach are found to have a very good agreement with the measurements.
Technical Paper

Novel Approach to Integration of Turbocompounding, Electrification and Supercharging Through Use of Planetary Gear System

2018-04-03
2018-01-0887
Technologies that provide potential for significant improvements in engine efficiency include, engine downsizing/downspeeding (enabled by advanced boosting systems such as an electrically driven compressor), waste heat recovery through turbocompounding or organic Rankine cycle and 48 V mild hybridization. FEV’s Integrated Turbocompounding/Waste Heat Recovery (WHR), Electrification and Supercharging (FEV-ITES) is a novel approach for integration of these technologies in a single unit. This approach provides a reduced cost, reduced space claim and an increase in engine efficiency, when compared to the independent integration of each of these technologies. This approach is enabled through the application of a planetary gear system. Specifically, a secondary compressor is connected to the ring gear, a turbocompounding turbine or organic Rankine cycle (ORC) expander is connected to the sun gear, and an electric motor/generator is connected to the carrier gear.
Technical Paper

CFD Based Lumped Parameter Method to Predict the Thermal Performance of Brake Rotors in Vehicle

2003-03-03
2003-01-0601
The objective of the paper is to outline a CFD based lumped parameter method that compares the thermal performance of brake rotors, predicts the transient temperatures and brake lining wear in vehicle. A two-pronged approach was developed for this purpose. A rotor stand-alone model was used to predict rotor performance curves. Simultaneously heat transfer coefficients of the brake rotor were computed corresponding to the rotor performance curves and the appropriate heat transfer correlations were established. The second part of this approach involved developing a brake model in a vehicle and solving for the air flow through rotors in different vehicles at various speeds. These rotor flows were cross-referenced with the rotor performance curves, generated earlier for that rotor, to compute the heat transfer coefficients in the vehicle.
Technical Paper

Objective Characterization of Vehicle Brake Feel

1994-03-01
940331
Historically, vehicle brake feel has usually been evaluated in a subjective manner. If an objective measure was used, it was pedal force versus the deceleration rate of the vehicle. Stopping distance is almost always used to characterize vehicle braking performance by the automotive press. This represents limit braking performance, but ignores braking performance under normal driving conditions experienced by customers most of the time. Evaluation of pedal feel by the press is generally limited to subjective adjectives such as “mushy”, “positive”, and “responsive”. A method will be presented, which is being used by General Motors, to translate customer brake feel expectations into objective performance metrics. These metrics are correlated to actual subjective ratings and are used to set objective, measurable requirements for performance.
Technical Paper

Mercury in Automotive Systems - A White Paper

1996-02-01
960409
Mercury is a naturally occurring element and therefore neither created nor destroyed, but pushed and pulled throughout the biosphere. Mercury released in vapor form to the atmosphere can be transported and redeposited via atmospheric deposition. Recent international, federal and state regulatory initiatives have been directed toward effective use management and minimization of toxic substances in manufacturing and commerce. The concern is that these substances bioaccumulate in the food chain, posing a threat to human health and the environment. The most significant human health exposure to mercury is the dietary intake of fish and fish products, since mercury biomagnifies in aquatic species. The Michigan Environmental Science Board (MESB), a task force formed by the state of Michigan, has found a small margin of safety between background (i.e., natural) levels of mercury exposure and concentrations that can cause harm to humans. At the national level, the U.S.
Technical Paper

The Effect of Racetrack / High Energy Driving on Brake Caliper Performance

2006-04-03
2006-01-0472
It is well understood that conditions encountered during racetrack driving are amongst the most severe to which vehicle braking systems can be subjected. High braking pressure is combined with enormous energy input and high temperatures for multiple braking events. Brake fade, degradation of brake pedal feel, and brake lining taper/overall wear are common results of racetrack usage. This paper focuses on how racetrack and high energy driving-type conditioning affects the performance of the brake caliper - in particular, its ability to maintain an even pressure distribution at all of its interfaces (pad to rotor, piston to pad backing plate, and housing to pad backing plate).
Technical Paper

Finite Difference Heat Transfer Model of a Steel-clad Aluminum Brake Rotor

2005-10-09
2005-01-3943
This paper describes the heat transfer model of a composite aluminum brake rotor and compares the predicted temperatures to dynamometer measurements taken during a 15 fade stop trial. The model is based on meshed surface geometry which is simulated using RadTherm software. Methods for realistically modeling heat load distribution, surface rotation, convection cooling and radiation losses are also discussed. A comparison of the simulation results to the dynamometer data shows very close agreement throughout the fade stop trial. As such, the model is considered valid and will be used for further Steel Clad Aluminum (SCA) rotor development.
Technical Paper

Formulation of Robustness in a CAE Design Model

2005-04-11
2005-01-0813
As the computer efficiency and capability increase, so as the Computer Aided Engineering (CAE) technologies improve. Recently Robust Design or Reliability Based Design Optimization (RBDO) technologies have been utilized in all sorts of industries including automotive. The process generally involves identifying key input design variables and key performance output variables, determining a sampling plan for CAE simulations, building a response surface model (RSM), analyzing the results, and finding the optimized design that meets the reliability criteria. Yet little was addressed on the robustness of a CAE design model in the process. A systematic method of defining Robustness in a CAE design model was developed. How robust a CAE model is and how far away an optimized design is from the More Robust Region (MRR) are addressed in this paper.
X