Refine Your Search



Search Results

Technical Paper

Coordinated Control of Multi-Degree-of Freedom Fuel Systems

This paper identifies potential performance benefits and computational costs of applying advanced multivariable control theory concepts to coordinate the control of a general multi-degree-of-freedom fuel system. The control variables are injection duration and pressure. The focus is on the design of a robust multi-input multi-output controller using H-infinity and mu synthesis methodology to coordinate the control of injection duration and pressure; reduce overshoots and system sensitivity to parameter variations caused by component aging. Model reduction techniques are used to reduce the order of the H-infinity controller to make it practically implementable. Computer simulation is used to test the robust performance of a generic engine and fuel system model controlled by the reduced order H-infinity controller and a traditional proportional plus integral controller.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on Spray SMD and D.I. Emissions

A study was performed to correlate the Sauter Mean Diameter (SMD), NOx and particulate emissions of a direct injection diesel engine with various injection pressures and different nozzle geometry. The spray experiments and engine emission tests were conducted in parallel using the same fuel injection system and same operating conditions. With high speed photography and digital image analysis, a light extinction technique was used to obtain the spray characteristics which included spray tip penetration length, spray angle, and overall average SMD for the entire spray. The NOx and particulate emissions were acquired by running the tests on a fully instrumented Caterpillar 3406 heavy duty engine. Experimental results showed that for higher injection pressures, a smaller SMD was observed, i.e. a finer spray was obtained. For this case, a higher NOx and lower particulate resulted.
Technical Paper

Nozzle Effect on High Pressure Diesel Injection

Studies of transient diesel spray characteristics at high injection pressures were conducted in a constant volume chamber by utilizing a high speed photography and light extinction optical diagnostic technique. Two different types of nozzle hole entrances were investigated: a sharp-edged and a round-edged nozzle. The experimental results show that for the same injection delivery, the sharp-edged inlet injector needed a higher injection pressure to overcome the higher friction loss, but it produced longer spray tip penetration length, larger spray angle, smaller droplet sizes, and also lower particulate emission from a parallel engine test. For the round-edged and smooth edged tips at the same injection pressure, the sharp-edged inlet tip took a longer injection duration to deliver a fixed mass of fuel and produced larger overall average Sauter Mean Diameter (SMD) droplets.
Technical Paper

A 2-D Computational Model Describing the Flow and Filtration Characteristics of a Ceramic Diesel Particulate Trap

A 2-D computational model was developed to describe the flow and filtration processes, in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state trap loading, as well as the transient behavior of the flow and filtration processes. The theoretical model includes the effect of a copper fuel additive on trap loading and transient operation. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations. The filtration theory incorporated in the time dependent numerical code included the diffusion, inertia, and direct interception mechanisms. Based on a measured upstream particle size distribution, using the filtration theory, the downstream particle size distribution was calculated. The theoretical filtration efficiency, based on particle size distribution, agreed very well (within 1%) with experimental data for a number of different cases.
Technical Paper

Diesel Engine Flame Photographs With High Pressure Injection

The effect of high pressure injection (using an accumulator type unit injector with peak injection pressure of approximately 20,000 psi, having a decreasing injection rate profile) on combustion was studied. Combustion results were obtained using a DDA Series 3–53 diesel engine with both conventional analysis techniques and high speed photography. Diesel No. 2 fuel and a low viscosity - high volatility fuel, similar to gasoline were used in the study. Results were compared against baseline data obtained with standard injectors. Some of the characteristics of high pressure injection used with Diesel No. 2 fuel include: substantially improved ignition, shorter ignition delay, and higher pressure rise. Under heavy load - high speed conditions, greater smokemeter readings were achieved with the high pressure injection system with Diesel No. 2 fuel. Higher flame speeds and hence, greater resistance to knock were observed with the high volatility low cetane fuel.
Technical Paper

Development of the Hydraulic System for the Caterpillar 416 Backhoe Loader

A key ingredient in the development of the Caterpillar 416 backhoe loader was the development of the hydraulic system. A load sensing, pressure compensated system was selected on the basis of its best being able to meet design goals. The result is a backhoe loader in which the hydraulic system contributes greatly to the vehicle's overall acceptance by operating efficiently and utilizing low lever efforts for ease of control.
Technical Paper

Identifying Optimal Operating Points in Terms of Engineering Constraints and Regulated Emissions in Modern Diesel Engines

In recent decades, “physics-based” gas-dynamics simulation tools have been employed to reduce development timescales of IC engines by enabling engineers to carry out parametric examinations and optimisation of alternative engine geometry and operating strategy configurations using desktop PCs. However to date, these models have proved inadequate for optimisation of in-cylinder combustion and emissions characteristics thus extending development timescales through additional experimental development efforts. This research paper describes how a Stochastic Reactor Model (SRM) with reduced chemistry can be employed to successfully determine in-cylinder pressure, heat release and emissions trends from a diesel fuelled engine operated in compression ignition direct injection mode using computations which are completed in 147 seconds per cycle.
Technical Paper

Calculations of Wind Tunnel Circuit Losses and Speed with Acoustic Foams

The GM Aerodynamics Laboratory (GMAL) was modified in 2001 to reduce the background noise level and provide a semi-anechoic test section for wind noise testing. The walls and ceiling of the test section were lined with acoustic foam and foam-filled turning vanes were installed in the corners. Portions of the wind tunnel circuit were also treated with fiberglass material covered by perforated sheet metal panels. High skin drag due to roughness of the foam surfaces, along with high blockage due to the large turning vanes, increased the wind tunnel circuit losses so that the maximum wind speed in the test section was reduced. The present study calculates the averaged total pressure losses at three locations to evaluate the reductions in skin drag and blockage from proposed modifications to the circuit, which were intended to increase the test section wind speed without compromising noise levels.
Technical Paper

Experimental Study Comparing Particle Size and Mass Concentration Data for a Cracked and Un-Cracked Diesel Particulate Filter

Steady state loading characterization experiments were conducted at three different engine load conditions and rated speed on the cracked catalyzed particulate filter (CPF). The experiments were performed using a 10.8 L 2002 Cummins ISM-330 heavy duty diesel engine. The CPF underwent a ring off failure, commonly seen in particulate filters, due to high radial and axial temperature gradients. The filters were cracked during baking in an oven which was done to regenerate PM collected after every loading characterization experiment. Two different configurations i.e. with and without a diesel oxidation catalyst (DOC) upstream of the CPF were studied. The data were compared with that on an un-cracked CPF at similar engine conditions and configurations. Pressure drop, transient filtration efficiency by particle size and PM mass and gaseous emissions measurements were made during each experiment.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part II - Blend Properties and Target Value Sensitivity

Higher carbon number alcohols offer an opportunity to meet the Renewable Fuel Standard (RFS2) and improve the energy content, petroleum displacement, and/or knock resistance of gasoline-alcohol blends from traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part II of this paper builds upon the alcohol selection, fuel implementation scenarios, criteria target values, and property prediction methodologies detailed in Part I. For each scenario, optimization schemes include maximizing energy content, knock resistance, or petroleum displacement. Optimum blend composition is very sensitive to energy content, knock resistance, vapor pressure, and oxygen content criteria target values. Iso-propanol is favored in both scenarios' suitable blends because of its high RON value.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part I - Methodology and Scenario Definition

The U.S. Renewable Fuel Standard (RFS2) requires an increase in the use of advanced biofuels up to 36 billion gallons by 2022. Longer chain alcohols, in addition to cellulosic ethanol and synthetic biofuels, could be used to meet this demand while adhering to the RFS2 corn-based ethanol limitation. Higher carbon number alcohols can be utilized to improve the energy content, knock resistance, and/or petroleum displacement of gasoline-alcohol blends compared to traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part I of this paper focuses on the development of scenarios by which to compare higher alcohol fuel blends to traditional ethanol blends. It also details the implementation of fuel property prediction methods adapted from literature. Possible combinations of eight alcohols mixed with a gasoline blendstock were calculated and the properties of the theoretical fuel blends were predicted.
Technical Paper

The Filtration, Oxidation and Pressure Drop Characteristics of a Catalyzed Particulate Filter during Active Regeneration – A 1D Modeling Study

Active regeneration of a catalyzed particulate filter (CPF) is affected by a number of parameters specifically particulate matter loading and inlet temperature. The MTU 1-D 2-Layer CPF model [1] was used to analyze these effects on the pressure drop, oxidation and filtration characteristics of a CPF during active regeneration. In addition, modeling results for post loading experiments were analyzed to understand the difference between loading a clean filter as compared to a partially regenerated filter. Experimental data obtained with a production Cummins regenerative particulate filter for loading, active regenerations and post loading experiments were used to calibrate the MTU 1-D 2-Layer CPF model. The model predicted results are compared with the experimental data and were analyzed to understand the CPF characteristics during active regeneration at 1.1, 2.2 and 4.1 g/L particulate matter (PM) loading and CPF inlet temperatures of 525, 550 and 600°C.
Technical Paper

A Methodology to Estimate the Mass of Particulate Matter Retained in a Catalyzed Particulate Filter as Applied to Active Regeneration and On-Board Diagnostics to Detect Filter Failures

A methodology to estimate the mass of particulate retained in a catalyzed particulate filter as a function of measured total pressure drop, volumetric flow rate, exhaust temperature, exhaust gas viscosity and cake and wall permeability applicable to real-time computation is discussed. This methodology is discussed from the view point of using it to indicate when to initiate active regeneration and as an On-Board Diagnostic tool to detect filter failures. Steady-state loading characterization experiments were conducted on a catalyzed diesel particulate filter (CPF) in a Johnson Matthey CCRT® (catalyzed continuously regenerating trap) system. The experiments were performed using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Experiments were conducted at 20, 60 and 75% of full engine load (1120 Nm) and rated speed (2100 rpm) to measure the pressure drop, transient filtration efficiency, particulate mass balance, and gaseous emissions.
Technical Paper

Development of a Micro-Engine Testing System

A test stand was developed to evaluate an 11.5 cc, two-stroke, internal combustion engine in anticipation of future combustion system modifications. Detailed engine testing and analysis often requires complex, specialized, and expensive equipment, which can be problematic for research budgets. This problem is compounded by the fact that testing “micro” engines involves low flow rates, high rotational speeds, and compact dimensions which demand high-accuracy, high-speed, and compact measurement systems. On a limited budget, the task of developing a micro-engine testing system for advanced development appears quite challenging, but with careful component selection it can be accomplished. The anticipated engine investigation includes performance testing, fuel system calibration, and combustion analysis. To complete this testing, a custom test system was developed.
Technical Paper

Schlieren and Mie Scattering Visualization for Single-Hole Diesel Injector under Vaporizing Conditions with Numerical Validation

This paper reports an experimental and numerical investigation on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel spray under engine-like conditions. The high pressure diesel spray was investigated in an optically-accessible constant volume combustion vessel for studying the influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio). Measurements were carried out by a high-speed imaging system capable of acquiring Mie-scattering and schlieren in a nearly simultaneous fashion mode using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies were performed at three injection pressures (70, 120, and 180 MPa), 23.9 kg/m3 ambient gas density, and 900 K gas temperature in the vessel.
Technical Paper

Internal and Near-Nozzle Flow in a Multi-Hole Gasoline Injector Under Flashing and Non-Flashing Conditions

A computational and experimental study was performed to characterize the flow within a gasoline injector and the ensuing sprays. The computations included the effects of turbulence, cavitation, flash-boiling, compressibility, and the presence of non-condensible gases. The flow domain corresponded to the Engine Combustion Network's Spray G, an eight-hole counterbore injector operating in a variety of conditions. First, a rate tube method was used to measure the rate of injection, which was then used to define inlet boundary conditions for simulation. Correspondingly, injection under submerged conditions was simulated for direct comparison with experimental measurements of discharge coefficient. Next, the internal flow and external spray into pressurized nitrogen were simulated under the base spray G conditions. Finally, injection under flashing conditions was simulated, where the ambient pressure was below the vapor pressure of the fuel.
Technical Paper

Investigation of the Impact of Impingement Distance on Momentum Flux Rate of Injection Measurements of a Diesel Injector

Diesel combustion and emissions is largely spray and mixing controlled. Spray and combustion models enable characterization over a range of conditions to understand optimum combustion strategies. The validity of models depends on the inputs, including the rate of injection profile of the injector. One method to measure the rate of injection is to measure the momentum, where the injected fuel spray is directed onto a force transducer which provides measurements of momentum flux. From this the mass flow rate is calculated. In this study, the impact of impingement distance, the distance from injector nozzle exit to the anvil connected to the force transducer, is characterized over a range of 2 - 12 mm. This characterization includes the impact of the distance on the momentum flux signal in both magnitude and shape. At longer impingement distances, it is hypothesized that a peak in momentum could occur due to increasing velocity of fuel injected as the pintle fully opens.
Technical Paper

HEUI Injector Modeling and ROI Experiments for High Injection Pressure of Diesel and Dimethyl Ether (DME)

Dimethyl Ether (DME) is considered a clean alternative fuel to diesel due to its soot-free combustion characteristics and its capability to be produced from renewable energy sources rather than fossil fuels such as coal or petroleum. To mitigate the effect of strong wave dynamics on fuel supply lines caused due to the high compressibility of DME and to overcome its low lubricity, a hydraulically actuated electronic unit injector (HEUI) with pressure intensification was used. The study focuses on high pressure operation, up to 2000 bar, significantly higher than pressure ranges reported previously with DME. A one-dimensional HEUI injector model is built in MATLAB/SIMULINK graphical software environment, to predict the rate of injection (ROI) profile critical to spray and combustion characterization.
Technical Paper

Effects of Altitude and Road Gradients in Boosted Hydraulic Brake Systems

Brake systems are strongly related with safety of vehicles. Therefore a reliable design of the brake system is critical as vehicles operate in a wide range of environmental conditions, fulfilling different security requirements. Particularly, countries with mountainous geography expose vehicles to aggressive variations in altitude and road grade. These variations affect the performance of the brake system. In order to study how these changes affect the brake system, two approaches were considered. The first approach was centered on the development of an analytical model for the longitudinal dynamics of the vehicle during braking maneuvers. This model was developed at system-level, considering the whole vehicle. This allowed the understanding of the relation between the braking force and the altitude and road grade, for different fixed deceleration requirement scenarios. The second approach was focused on the characterization of the vacuum servo operation.
Technical Paper

Real-Time Closed-Loop Control of a Light-Duty RCCI Engine During Transient Operations

Real-time control of Reactivity Controlled Compression Ignition (RCCI) during engine load and speed transient operation is challenging, since RCCI combustion phasing depends on nonlinear thermo-kinetic reactions that are controlled by dual-fuel reactivity gradients. This paper discusses the design and implementation of a real-time closed-loop combustion controller to maintain optimum combustion phasing during RCCI transient operations. New algorithms for real-time in-cylinder pressure analysis and combustion phasing calculations are developed and embedded on a Field Programmable Gate Array (FPGA) to compute RCCI combustion and performance metrics on cycle-by-cycle basis. This cycle-by-cycle data is then used as a feedback to the combustion controller, which is implemented on a real-time processor. A computationally efficient algorithm is introduced for detecting Start of Combustion (SOC) for the High Temperature Heat Release (HTHR) or main-stage heat release.