Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Nonlinear Model Predictive Control of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

This paper studies the nonlinear model predictive control for a power-split Hybrid Electric Vehicle (HEV) power management system to improve the fuel economy. In this paper, a physics-based battery model is built and integrated with a base HEV model from Autonomie®, a powertrain and vehicle model architecture and development software from Argonne National Laboratory. The original equivalent circuit battery model from the software has been replaced by a single particle electrochemical lithium ion battery model. A predictive model that predicts the driver’s power request, the battery state of charge (SOC) and the engine fuel consumption is studied and used for the nonlinear model predictive controller (NMPC). A dedicated NMPC algorithm and its solver are developed and validated with the integrated HEV model. The performance of the NMPC algorithm is compared with that of a rule-based controller.
Technical Paper

Model-Based Analysis of V2G Impact on Battery Degradation

Vehicle-to-Grid (V2G) service has a potential to improve the reliability and stability of the electrical grid due to the ability of providing bi-directional power flow from/to the grid. However, frequent charging/discharging may impact the battery lifetime. This paper presents the analysis of battery degradation in three scenarios. In the first scenario, different battery capacities are considered. In the second scenario, the battery degradation with various depth of discharge (DOD) are studied. In the third scenario, the capacity loss due to different charging regime are compared. The charging/discharging of plug-in electric vehicles (PEVs) are simulated in a single-phase microgrid system integrated with a photovoltaics (PV) farm, an energy storage system (ESS), and ten electric vehicle service equipment (EVSE). The battery degradation model is an energy throughput model, which is developed based on the Arrhenius equation and a power law relationship between time and capacity fading.
Technical Paper

Integration of OpenADR with Node-RED for Demand Response Load Control Using Internet of Things Approach

The increased market share of electric vehicles and renewable energy resources have raised concerns about their impact on the current electrical distribution grid. To achieve sustainable and stable power distribution, a lot of effort has been made to implement smart grids. This paper addresses Demand Response (DR) load control in a smart grid using Internet of Things (IoT) technology. A smart grid is a networked electrical grid which includes a variety of components and sub-systems, including renewable energy resources, controllable loads, smart meters, and automation devices. An IoT approach is a good fit for the control and energy management of smart grids. Although there are various commercial systems available for smart grid control, the systems based on open sources are limited. In this study, we adopt an open source development platform named Node-RED to integrate DR capabilities in a smart grid for DR load control. The DR system employs the OpenADR standard.
Technical Paper

Simulation of Lithium Ion HEV Battery Aging Using Electrochemical Battery Model under Different Ambient Temperature Conditions

This paper investigates the aging performance of the lithium ion cobalt oxide battery pack of a single shaft parallel hybrid electric vehicle (HEV) under different ambient temperatures. Varying ambient temperature of HEVs results in different battery temperature and then leads to different aging performance of the battery pack. Battery aging is reflected in the increasing of battery internal resistance and the decreasing of battery capacity. In this paper, a single shaft parallel hybrid electric vehicle model is built by integrating Automotive Simulation Model (ASM) from dSPACE and AutoLion-ST battery model from ECPower to realize the co-simulation of HEV powertrain in the common MATLAB/Simulink platform. The battery model is a physics-based and thermally-coupled battery (TCB) model, which enables the investigation of battery capacity degradation and aging. Standard driving cycle with differing ambient temperatures is tested using developed HEV model.
Journal Article

The Model Integration and Hardware-in-the-Loop (HiL) Simulation Design for the Analysis of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

This paper studies the hardware-in-the-loop (HiL) design of a power-split hybrid electric vehicle (HEV) for the research of HEV lithiumion battery aging. In this paper, an electrochemical model of a lithium-ion battery pack with the characteristics of battery aging is built and integrated into the vehicle model of Autonomie® software from Argonne National Laboratory. The vehicle model, together with the electrochemical battery model, is designed to run in a dSPACE real-time simulator while the powertrain power distribution is managed by a dSPACE MicroAutoBoxII hardware controller. The control interface is designed using dSPACE ControlDesk to monitor the real-time simulation results. The HiL simulation results with the performance of vehicle dynamics and the thermal aging of the battery are presented and analyzed.
Technical Paper

Route Optimized Energy Management of a Connected and Automated Multi-mode Hybrid Electric Vehicle using Dynamic Programming

This paper presents a methodology to optimize the blending of Charge Depleting (CD) and Charge Sustaining (CS) modes in a multi-mode plug-in hybrid electric vehicle (PHEV) that reduces overall energy consumption when the selected route cannot be drive purely electric. The PHEV used in this investigation is the second generation Chevrolet Volt and as many as four instrumented vehicles were utilized simultaneously on road to acquire validation data. The optimization method utilized is dynamic programming (DP) and is paired with a reduced fidelity propulsion system and vehicle dynamics model to enable compatibility with embedded controllers and be computationally efficient of the optimal blended operating scheme over an entire drive route.