Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Investigation of Impacts of Spark Plug Orientation on Early Flame Development and Combustion in a DI Optical Engine

2017-03-28
2017-01-0680
The influence of spark plug orientation on early flame kernel development is investigated in an optically accessible gasoline direct injection homogeneous charged spark ignition engine. This investigation provides visual understanding and statistical characterization of how spark plug orientation impacts the early flame kernel and thus combustion phasing and engine performance. The projected images of flame kernel were captured through natural flame chemiluminescence with a high-speed camera at 10,000 frames per second, and the ignition secondary discharge voltage and current were measured with a 10 MHz DAQ system. The combustion metrics were determined using measurement from a piezo-electric in-cylinder pressure transducer and real-time engine combustion analyzer. Three spark plug orientations with two different electrode designs were studied. The captured images of the flame were processed to yield 2D and 1D probability distributions.
Journal Article

Analysis and Control of a Torque Blended Hybrid Electric Powertrain with a Multi-Mode LTC-SI Engine

2017-03-28
2017-01-1153
Low Temperature Combustion (LTC) engines are promising to improve powertrain fuel economy and reduce NOx and soot emissions by improving the in-cylinder combustion process. However, the narrow operating range of LTC engines limits the use of these engines in conventional powertrains. The engine’s limited operating range can be improved by taking advantage of electrification in the powertrain. In this study, a multi-mode LTC-SI engine is integrated with a parallel hybrid electric configuration, where the engine operation modes include Homogeneous Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), and conventional Spark Ignition (SI). The powertrain controller is designed to enable switching among different modes, with minimum fuel penalty for transient engine operations.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Air Charge and Residual Gas Fraction Estimation for a Spark-Ignition Engine Using In-Cylinder Pressure

2017-03-28
2017-01-0527
An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
Technical Paper

Real-Time Closed-Loop Control of a Light-Duty RCCI Engine During Transient Operations

2017-03-28
2017-01-0767
Real-time control of Reactivity Controlled Compression Ignition (RCCI) during engine load and speed transient operation is challenging, since RCCI combustion phasing depends on nonlinear thermo-kinetic reactions that are controlled by dual-fuel reactivity gradients. This paper discusses the design and implementation of a real-time closed-loop combustion controller to maintain optimum combustion phasing during RCCI transient operations. New algorithms for real-time in-cylinder pressure analysis and combustion phasing calculations are developed and embedded on a Field Programmable Gate Array (FPGA) to compute RCCI combustion and performance metrics on cycle-by-cycle basis. This cycle-by-cycle data is then used as a feedback to the combustion controller, which is implemented on a real-time processor. A computationally efficient algorithm is introduced for detecting Start of Combustion (SOC) for the High Temperature Heat Release (HTHR) or main-stage heat release.
Technical Paper

Multi-Variable Sensitivity Analysis and Ranking of Control Factors Impact in a Stoichiometric Micro-Pilot Natural Gas Engine at Medium Loads

2022-03-29
2022-01-0463
A diesel piloted natural gas engine's performance varies depending on operating conditions and has performed best under medium to high loads. It can often equal or better the fuel conversion efficiency of a diesel-only engine in this operating range. This paper presents a study performed on a multi-cylinder Cummins ISB 6.7L diesel engine converted to run stoichiometric natural gas/diesel micro-pilot combustion with a maximum diesel contribution of 10%. This study systematically quantifies and ranks the sensitivity of control factors on combustion and performance while operating at medium loads. The effects of combustion control parameters, including the pilot start of injection, pilot injection pressure, pilot injection quantity, exhaust gas recirculation, and global equivalence ratio, were tested using a design of experiments orthogonal matrix approach.
Technical Paper

Investigation of Flow Conditions and Tumble near the Spark Plug in a DI Optical Engine at Ignition

2018-04-03
2018-01-0208
Tumble motion plays a significant role in modern spark-ignition engines in that it promotes mixing of air/fuel for homogeneous combustion and increases the flame propagation speed for higher thermal efficiency and lower combustion variability. Cycle-by-cycle variations in the flow near the spark plug introduce variability to the initial flame kernel development, stretching, and convection, and this variability is carried over to the entire combustion process. The design of current direct-injection spark-ignition engines aims to have a tumble flow in the vicinity of the spark plug at the time of ignition. This work investigates how the flow condition changes in the vicinity of the spark plug throughout the late compression stroke via high-speed imaging of a long ignition discharge arc channel and its stretching, and via flow field measurement by particle imaging velocimetry.
Technical Paper

Process for Study of Micro-pilot Diesel-NG Dual Fuel Combustion in a Constant Volume Combustion Vessel Utilizing the Premixed Pre-burn Procedure

2019-04-02
2019-01-1160
A constant volume spray and combustion vessel utilizing the pre-burn mixture procedure to generate pressure, temperature, and composition characteristic of near top dead center (TDC) conditions in compression ignition (CI) engines was modified with post pre-burn gas induction to incorporate premixed methane gas prior to diesel injection to simulate processes in dual fuel engines. Two variants of the methane induction system were developed and studied. The first used a high-flow modified direct injection injector and the second utilized auxiliary ports in the vessel that are used for normal intake and exhaust events. Flow, mixing, and limitations of the induction systems were studied. As a result of this study, the high-flow modified direct injection injector was selected because of its controlled actuation and rapid closure. Further studies of the induction system post pre-burn were conducted to determine the temperature limit of the methane auto-ignition.
Technical Paper

Classification and Characterization of Heat Release Rate Traces in Low Temperature Combustion for Optimal Engine Operation

2024-04-09
2024-01-2835
Low temperature combustion (LTC) modes are among the advanced combustion technologies which offer thermal efficiencies comparable to conventional diesel combustion and produce ultra-low NOx and particulate matter (PM) emissions. However, combustion timing control, excessive pressure rise rate and high cyclic variations are the common challenges encountered by the LTC modes. These challenges can be addressed by developing model-based control framework for the LTC engine. In the current study, in-cylinder pressure data for dual-fuel LTC engine operation is analyzed for 636 different operating conditions and the heat release rate (HRR) traces are classified into three distinct classes based on their distinct shapes. These classes are named as Type-1, Type-2 and Type-3, respectively.
X