Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Conjugate Heat Transfer in CI Engine CFD Simulations

2008-04-14
2008-01-0973
The development of new high power diesel engines is continually going for increased mean effective pressures and consequently increased thermal loads on combustion chamber walls close to the limits of endurance. Therefore accurate CFD simulation of conjugate heat transfer on the walls becomes a very important part of the development. In this study the heat transfer and temperature on piston surface was studied using conjugate heat transfer model along with a variety of near wall treatments for turbulence. New wall functions that account for variable density were implemented and tested against standard wall functions and against the hybrid near wall treatment readily available in a CFD software Star-CD.
Technical Paper

Diesel Spray Penetration and Velocity Measurements

2008-10-06
2008-01-2478
This study is presenting a comparative spray study of modern large bore medium speed diesel engine common rail injectors. One subject of paper is to focus on nozzles with same nominal flow rate, but different machining. The other subject is penetration velocity measurements, which have a new approach when trying to understand the early phase of transient spray. A new method to use velocimetry for spray tip penetration measurements is here introduced. The length where spray penetration velocity is changed is found. This length seems to have clear connection to volume fraction of droplets at gas. These measurements also give a tool to divide the development of spray into acceleration region and deceleration region, which is one approach to spray penetration. The measurements were performed with backlight imaging in pressurized injection test rig at non-evaporative conditions. Gas density and injection pressure were matched to normal diesel engine operational conditions.
Technical Paper

Valve Train Design for a New Gas Exchange Process

2004-03-08
2004-01-0607
The design and testing of the valve train for a new two-stroke diesel engine concept [1,2] is presented. The gas exchange of this process requires extremely fast-acting inlet valves, which constituted a very demanding designing task. A simulation model of the prototype valve train was constructed with commercially available software. The simulation program served as the main tool for optimizing the dynamic behavior of the valve train. The prototype valve train was built according to the simulations and valve acceleration measurements were performed in order to validate the simulation results. The simulations and measurements are presented in detail in this paper.
Technical Paper

Diesel Spray Simulation and KH-RT Wave Model

2003-10-27
2003-01-3231
This study presents diesel spray breakup regimes and the wave model basic theory from literature. The RD wave model and the KH-RT wave model are explained. The implementation of the KH-RT wave model in a commercial CFD code is briefly presented. This study relies on experimental data from non-evaporating sprays that have earlier been measured at Helsinki University of Technology. The simulated fuel spray in a medium-speed diesel engine had a satisfactory match with the experimental data. The KH-RT wave model resulted in a much faster drop breakup than with the RD wave model. This resulted in a thin spray core with the KH-RT model. The fuel viscosity effect on drop sizes was well predicted by the KH-RT wave model.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

Relating Integral Length Scale to Turbulent Time Scale and Comparing k-ε and RNG k-ε Turbulence Models in Diesel Combustion Simulation

2002-03-04
2002-01-1117
A modified version of the Laminar and Turbulent Characteristic Time combustion model and the Hiroyasu-Magnussen soot model have been implemented in the flow solver Star-CD. Combustion simulations of three DI diesel engines, utilizing the standard k-ε turbulence model and a modified version of the RNG k-ε turbulence model, have been performed and evaluated with respect to combustion performance and emissions. Adjustments of the turbulent characteristic combustion time coefficient, which were necessary to match the experimental cylinder peak pressures of the different engines, have been justified in terms of non-equilibrium turbulence considerations. The results confirm the existence of a correlation between the integral length scale and the turbulent time scale. This correlation can be used to predict the combustion time scale in different engines.
Technical Paper

LES and RNG Turbulence Modeling in DI Diesel Engines

2003-03-03
2003-01-1069
The one-equation subgrid scale model for the Large Eddy Simulation (LES) turbulence model has been compared to the popular k-ε RNG turbulence model in very different sized direct injection diesel engines. The cylinder diameters of these engines range between 111 and 200 mm. This has been an initial attempt to study the effect of LES in diesel engines without any modification to the combustion model being used in its Reynolds-averaged Navier-Stokes (RANS) form. Despite some deficiencies in the current LES model being used, it already gave much more structured flow field with approximately the same kind of accuracy in the cylinder pressure predictions than the k-ε RNG turbulence model.
Technical Paper

Applying Soot Phi-T Maps for Engineering CFD Applications in Diesel Engines

2005-10-24
2005-01-3856
Soot modeling has become increasingly important as diesel engine manufacturers are faced with constantly tightening soot emission limits. As such the accuracy of the soot models used is more and more important but at the same time 3-D CFD engine studies require models that are computationally not too demanding. In this study, soot Phi-T maps created with detailed chemistry code have been used to develop a soot model for engineering purposes. The proposed soot model was first validated against detailed chemistry results in premixed laminar environment. As turbulence in engines is of major importance, it was taken into account in the soot oxidation part of the model with the laminar and turbulent characteristic time- type of approach. Finally, the model was tested in a large bore Diesel engine with varying loads. Within the steps described above, the proposed model was also compared with the well-known Hiroyasu-Magnussen soot model.
Technical Paper

Cylinder Charge, Initial Flow Field and Fuel Injection Boundary Condition in the Multidimensional Modeling of Combustion in Compression Ignition Engines

2004-10-25
2004-01-2963
Cylinder charge, cylinder flow field and fuel injection play the dominant roles in controlling combustion in compression ignition engines. Respective computational cylinder charge, initial flow field and fuel injection boundary affect combustion simulation and the quality of emission prediction. In this study the means of generating the initial values and boundary data are presented and the effect of different methods is discussed. This study deals with three different compression ignition engines with cylinder diameters of 111, 200 and 460 mm. The initial cylinder charge has been carefully analyzed through gas exchange pressure recordings and corresponding 1-dimensional simulation. The swirl generated by intake ports in a high-speed engine is simulated and measured. The combustion simulation using a whole cylinder model was compared with a sector model simulation result.
Technical Paper

Optical In-Cylinder Measurements of a Large-Bore Medium-Speed Diesel Engine

2008-10-06
2008-01-2477
The objective of this study was to build up an optical access into a large bore medium-speed research engine and carry out the first fuel spray Particle Image Velocimetry (PIV) measurements in the running large bore medium-speed engine in high pressure environment. The aim was also to measure spray penetration with same optical access and apparatus. The measurements were performed in a single-cylinder large bore medium-speed research engine, the Extreme Value Engine (EVE) with optical access into the combustion chamber. The authors are not aware of any other studies on optical spray measurements in large bore medium-speed diesel engines. Successful optical measurements of the fuel spray penetration and the velocity fields were carried out. This confirms that the exceptional component design and laser sheet alignment used in this study proved to be valid for optical fuel spray measurements in large-bore medium-speed diesel engines.
Journal Article

Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine

2008-10-06
2008-01-2500
Hydrotreating of vegetable oils or animal fats is an alternative process to esterification for producing biobased diesel fuels. Hydrotreated products are also called renewable diesel fuels. Hydrotreated vegetable oils (HVO) do not have the detrimental effects of ester-type biodiesel fuels, like increased NOx emission, deposit formation, storage stability problems, more rapid aging of engine oil or poor cold properties. HVOs are straight chain paraffinic hydrocarbons that are free of aromatics, oxygen and sulfur and have high cetane numbers. In this paper, NOx - particulate emission trade-off and NOx - fuel consumption trade-off are studied using different fuel injection timings in a turbocharged charge air cooled common rail heavy duty diesel engine. Tested fuels were sulfur free diesel fuel, neat HVO, and a 30% HVO + 70% diesel fuel blend. The study shows that there is potential for optimizing engine settings together with enhanced fuel composition.
X