Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Use of Unique Time History Input Excitation in the Dynamic Characterization of Automotive Mounts

The traditional method of dynamic characterization of elastomers used in industry has largely been based on sinusoidal input excitation. Discrete frequency sine wave signals at specified amplitudes are used to excite the elastomer in a step-sine sweep fashion. This paper will examine new methods of characterization using various broadband input excitations. These different inputs include continuous sine sweep (chirp), shaped random, and acquired road profile data. Use of these broadband data types is expected to provide a more accurate representation of conditions seen in the field, while helping to eliminate much of the interpolation that is inherent with the classic discrete step-sine technique. Results of the various input types are compared in this paper with those found using the classic discrete step-sine input.
Technical Paper

A Comparison Between Power Injection and Impulse Response Decay Methods for Estimating Frequency Averaged Loss Factors for SEA

Damping measurements on vehicle subsystems are rarely straightforward due to the complexity of the dynamic interaction of system joints, trim, and geometry. Various experimental techniques can be used for damping estimation, such as frequency domain modal analysis curve-fitting methods, time domain decay-rate methods, and other methods based on energy and wave propagation. Each method has its own set of advantages and drawbacks. This paper describes an analytical and an experimental comparison between two, widely used loss factor estimation techniques frequently used in Statistical Energy Analysis (SEA). The single subsystem Power Injection Method (PIM) and the Impulse Response Decay Method (IRDM) were compared using analytical models of a variety of simulated simple spring-mass-damper systems. Frequency averaged loss factor values were estimated from both methods for comparison.