Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Study of the Vapor- and Particle-Phase Sulfur Species in the Heavy-Duty Diesel Engine EGR Cooler

1998-05-04
981423
To meet future NO, heavy-duty diesel emissions standards, exhaust gas recirculation (EGR) technology is likely to be used. To improve fuel economy and further lower emissions, the recirculated exhaust gas needs to be cooled, with the possibility that cooling of the exhaust gas may form sulfuric acid condensate in the EGR cooler. This corrosive condensate can cause EGR cooler failure and consequentially result in severe damage to the engine. Both a literature review and a preliminary experimental study were conducted. In this study, a manually controlled EGR system was installed on a 1995 Cummins Ml l-330E engine which was operated at EPA mode 9* (1800 rpm and 75% load). The Goksoyr-Ross method (1)** was used to measure the particle-phase sulfate and vapor-phase H2SO4 and SO2 at the inlet and outlet locations of the EGR cooler, obtaining H2SO4 and SO2 concentrations. About 0.5% of fuel sulfur in the EGR cooler was in the particle-phase.
Technical Paper

Life Assessment of PM, Gaseous Emissions, and Oil Usage in Modern Marine Outboard Engines

2004-09-27
2004-32-0092
Recently, outboard engine technology has advanced significantly. With these new technologies comes a substantial improvement in emissions compared to traditional carbureted two-stroke engines. Some two-stroke gasoline direct injection (GDI) marine outboard engines are now capable of meeting California Air Resources Board 2008 Ultra-Low emissions standards. With improvement of gaseous emissions, studies are now being conducted to assess particulate matter (PM) emissions from all new technology marine outboard engines which include both four-stroke and two-stroke designs. Methods are currently being developed to determine the best way to measure PM from outboard engines. This study assesses gaseous and PM emissions, mutagenic activity of PM and oil consumption of two different technologies over the useful life of the engines.
X