Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Measurements of Deer with RADAR and LIDAR for Active Safety Systems

To reduce the number and severity of accidents, automakers have invested in active safety systems to detect and track neighboring vehicles to prevent accidents. These systems often employ RADAR and LIDAR, which are not degraded by low lighting conditions. In this research effort, reflections from deer were measured using two sensors often employed in automotive active safety systems. Based on a total estimate of one million deer-vehicle collisions per year in the United States, the estimated cost is calculated to be $8,388,000,000 [1]. The majority of crashes occurs at dawn and dusk in the Fall and Spring [2]. The data includes tens of thousands of RADAR and LIDAR measurements of white-tail deer. The RADAR operates from 76.2 to 76.8 GHz. The LIDAR is a time-of-flight device operating at 905 nm. The measurements capture the deer in many aspects: standing alone, feeding, walking, running, does with fawns, deer grooming each other and gathered in large groups.
Technical Paper

Statistical Models of RADAR and LIDAR Returns from Deer for Active Safety Systems

Based on RADAR and LiDAR measurements of deer with RADAR and LiDAR in the Spring and Fall of 2014 [1], we report the best fit statistical models. The statistical models are each based on time-constrained measurement windows, termed test-points. Details of the collection method were presented at the SAE World Congress in 2015. Evaluation of the fitness of various statistical models to the measured data show that the LiDAR intensity of reflections from deer are best estimated by the extreme value distribution, while the RCS is best estimated by the log-normal distribution. The value of the normalized intensity of the LiDAR ranges from 0.3 to 1.0, with an expected value near 0.7. The radar cross-section (RCS) varies from -40 to +10 dBsm, with an expected value near -14 dBsm.
Technical Paper

Autonomous Vehicle Sensor Suite Data with Ground Truth Trajectories for Algorithm Development and Evaluation

This paper describes a multi-sensor data set, suitable for testing algorithms to detect and track pedestrians and cyclists, with an autonomous vehicle’s sensor suite. The data set can be used to evaluate the benefit of fused sensing algorithms, and provides ground truth trajectories of pedestrians, cyclists, and other vehicles for objective evaluation of track accuracy. One of the principal bottlenecks for sensing and perception algorithm development is the ability to evaluate tracking algorithms against ground truth data. By ground truth we mean independent knowledge of the position, size, speed, heading, and class of objects of interest in complex operational environments. Our goal was to execute a data collection campaign at an urban test track in which trajectories of moving objects of interest are measured with auxiliary instrumentation, in conjunction with several autonomous vehicles (AV) with a full sensor suite of radar, lidar, and cameras.