Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

The Effects of Fuel Sulfur Concentration on Regulated and Unregulated Heavy-Duty Diesel Emissions

1993-03-01
930730
The effects of fuel sulfur concentration on heavy-duty diesel emissions have been studied at two EPA steady-state operating conditions, mode 9 (1900 RPM, 75% Load) and mode 11(1900 RPM, 25% Load). Data were obtained using one fuel at two sulfur levels (Low Sulfur, LS = 0.01 wt% S and Doped Low Sulfur DS = 0.29 wt% S). All tests were conducted using a Cummins LTA10-300 heavy-duty diesel engine. No significant changes were found for the nitrogen oxides (NOx), soluble organic fractions (SOF) and XAD-2 (a copolymer of styrene and divinylbenzene) organic component (XOC) due to the fuel sulfur level increase at either engine mode. The hydrocarbon (HC) levels were not significantly affected by sulfur at mode 9; however, at mode 11 the HC levels were reduced by 16%. The total particulate matter (TPM) levels increased by 17% at mode 11 and by 24% at mode 9 (both significantly different).
Technical Paper

The Effects of a Porous Ceramic Particulate Trap on the Physical, Chemical and Biological Character of Diesel Particulate Emissions

1983-02-01
830457
Physical, chemical, and biological characterization data for the particulate emissions from a Caterpillar 3208 diesel engine with and without Corning porous ceramic particulate traps are presented. Measurements made at EPA modes 3,4,5,9,lO and 11 include total hydrocarbon, oxides of nitrogen and total particulate matter emissions including the solid fraction (SOL), soluble organic fraction (SOF) and sulfate fraction (SO4), Chemical character was defined by fractionation of the SOF while biological character was defined by analysis of Ames Salmonella/ microsome bioassay data. The trap produced a wide range of total particulate reduction efficiencies (0-97%) depending on the character of the particulate. The chemical character of the SOF was significantly changed through the trap as was the biological character. The mutagenic specific activity of the SOF was generally increased through the trap but this was offset by a decrease in SOF mass emissions.
Technical Paper

Impact of EGR on Combustion Processes in a Hydrogen Fuelled SI Engine

2008-04-14
2008-01-1039
With concerns continuing to grow with respect to global warming from greenhouse gases, further regulations are being examined, developed and are expected for the emission of CO2 as an automobile exhaust. Renewable alternate fuels offer the potential to significantly reduce the CO2 impact of transportation. Hydrogen as a spark - ignition (SI) engine fuel provides this potential for significant CO2 reduction when generated from renewable resources. In addition, hydrogen has advantageous combustion properties including a wide flammable mixture range which facilitates lean burning and high dilution, fast combustion energy release and zero CO2 emissions. However, the high burning rates and fast energy release can lead to excessive in-cylinder pressures and temperatures resulting in combustion knock and high NOx emissions at stoichiometric operation.
Technical Paper

Hydrotreated Vegetable Oil and Miller Timing in a Medium-Speed CI Engine

2012-04-16
2012-01-0862
The objective of this paper is to analyse the performance and the combustion of a large-bore single-cylinder medium speed engine running with hydrotreated vegetable oil. This fuel has a paraffinic chemical structure and high Cetane number. These features enable achievement of complete and clean combustion with different engine setups. The main benefits are thus lower soot and nitrogen oxides emissions compared to diesel fuel. The facility used in this study is a research engine, where the conditions upstream the machine, the valve timing and the injection parameters are fully adjustable. In fact, the boundary conditions upstream and downstream the engine are freely controlled by a separated supply air plant and by a throttle valve, located at the end of the exhaust pipe. The injection system is common-rail: rail pressure, injection timing and duration are completely adjustable.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - AFR and EGR Dilution Effects

2015-09-29
2015-01-2808
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and reduce harmful emissions while maintaining durability. Transforming part of the vehicle fleet to NG is a path to reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

Directional Emissions Predictions of NOx and Soot of a Diesel ICE via Numerical Simulation

2015-09-29
2015-01-2880
The use of numerical simulations in the development processes of engineering products has been more frequent, since it enables prediction of premature failures and study of new promising concepts. In industry, numerical simulation has the function of reducing the necessary number of validation tests prior to spending resources on alternatives with lower likelihood of success. The internal combustion Diesel engine plays an important role in Brazil, since they are used extensively in automotive applications and commercial cargo transportation, mainly due to their relevant advantage in fuel consumption and reliability. In this case, the most critical pollutants are oxides of nitrogen (NOx) and particulate matter (PM) or soot. The reduction of their levels without affecting the engine performance is not a simple task. This paper presents a methodology for guiding the combustion analysis by the prediction of NOx emissions and soot using numerical simulation.
Technical Paper

Impact of Ignition Energy Phasing and Spark Gap on Combustion in a Homogenous Direct Injection Gasoline SI Engine Near the EGR Limit

2013-04-08
2013-01-1630
For spark-ignition gasoline engines operating under the wide speed and load conditions required for light duty vehicles, ignition quality limits the ability to minimize fuel consumption and NOx emissions via dilution under light and part load conditions. In addition, during transients including tip-outs, high levels of dilution can occur for multiple combustion events before either the external exhaust gas can be adjusted and cleared from the intake or cam phasing can be adjusted for correct internal dilution. Further improvement and a thorough understanding of the impact of the ignition system on combustion near the dilution limit will enable reduced fuel consumption and robust transient operation. To determine and isolate the effects of multiple parameters, a variable output ignition system (VOIS) was developed and tested on a 3.5L turbocharged V6 homogeneous charge direct-injection gasoline engine with two spark plug gaps and three ignition settings.
Technical Paper

Particulate Matter and Nitrogen Oxides Kinetics Based on Engine Experimental Data for a Catalyzed Diesel Particulate Filter

2014-04-01
2014-01-1553
A numerical model to simulate the filtration and oxidation of PM as well as the oxidation of NO, CO and HC in a CPF was developed in reference [1]. The model consists of parameters related to filtration and oxidation of PM and oxidation of NO, CO and HC. One of the goals of this paper is to use the model to determine the PM and gaseous species kinetics for ULSD, B10 and B20 fuels using data from passive oxidation and active regeneration engine experimental studies. A calibration procedure to identify the PM cake and wall filtration parameters and kinetic parameters for the PM oxidation and NO, CO and HC oxidation was developed. The procedure was then used with the passive oxidation [2] and active regeneration [3] engine data. The tests were conducted on a 2007 Cummins ISL engine with a DOC and CPF aftertreatment system. The simulation results show good agreement with the experimental CPF pressure drop, PM mass retained measurements and the outlet NO, NO2, CO and HC concentrations.
Technical Paper

Emissions from a Diesel Vehicle Operated on Alternative Fuels in Copenhagen

1999-10-25
1999-01-3603
A new diesel van with a reference weight of 1661 kg and a pre-chamber engine with a displacement of 2400cc was tested on a chassis dynamometer. The fuel consumption and emissions of carbon monoxide, unburned hydrocarbons, nitrogen oxides, carbon dioxide, particulate matter and associated organic material (SOF) as well as PAH (Polycyclic Aromatic Hydrocarbons) were measured under different driving conditions. The driving patterns used were recorded with a chase car at real traffic conditions on several roads in Copenhagen. The emissions were measured using different kind of diesel fuels as well as RME and biodiesel. CO, CO2, HC, and NOx levels generally decreased with increasing average speed of the driving cycle for all fuels tested. Cold start emissions were generally higher than for warm start.
Technical Paper

The Effect of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter on the Emissions from a Heavy Duty Diesel Engine

2006-04-03
2006-01-0875
The objective of this research was to study the effects of a CCRT®, henceforth called Diesel Oxidation Catalyst - Catalyzed Particulate Filter (DOC-CPF) system on particulate and gaseous emissions from a heavy-duty diesel engine (HDDE) operated at Modes 11 and 9 of the old Environmental Protection Agency (EPA) 13-mode test cycle Emissions characterized included: total particulate matter (TPM) and components of carbonaceous solids (SOL), soluble organic fraction (SOF) and sulfates (SO4); vapor phase organics (XOC); gaseous emissions of total hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOx), nitric oxide (NO) and nitrogen dioxide (NO2), oxygen (O2) and carbon dioxide (CO2); and particle size distributions at normal dilution ratio (NDR) and higher dilution ratio (HDR). Significant reductions were observed for TPM and SOL (>90%), SOF (>80%) and XOC (>70%) across the DOC-CPF at both modes.
Technical Paper

An Experimental and Computational Study of the Pressure Drop and Regeneration Characteristics of a Diesel Oxidation Catalyst and a Particulate Filter

2006-04-03
2006-01-0266
An experimental and computational study was performed to evaluate the performance of the CRT™ technology with an off-highway engine with a cooled low pressure loop EGR system. The MTU-Filter 1D DPF code predicts the particulate mass evolution (deposition and oxidation) in a diesel particulate filter (DPF) during simultaneous loading and during thermal and NO2-assisted regeneration conditions. It also predicts the pressure drop across the DPF, the flow and temperature fields, the solid filtration efficiency and the particle number distribution downstream of the DPF. A DOC model was also used to predict the NO2 upstream of the DPF. The DPF model was calibrated to experimental data at temperatures from 230°C to 550°C, and volumetric flow rates from 9 to 39 actual m3/min.
Technical Paper

Design and Development of the 2002 Michigan Tech FutureTruck, a Parallel Hybrid Electric Vehicle

2003-03-03
2003-01-1257
In this paper, the conversion of a production sport utility vehicle (SUV) to a hybrid electric vehicle utilizing a through-the-road parallel hybrid configuration is presented. The uniqueness of this design comes from its ability to decouple the front and rear drivetrain to simplify the packaging of underbody components. The Hybrid Theory utilizes a 2.0L, 4-cylinder engine that supplies 101kW (135hp) to the front wheels and a DC motor that supplies an additional 53kW (70hp) to the rear wheels to achieve the competition goals of a 25% improvement in fuel economy, a reduction in Green House Gas (GHG) emissions, as well as maintaining stock performance. The effects on drivability, manufacturing, fuel economy, emissions, and performance are presented along with the design, selection, and implementation of all of the vehicle conversion components.
Technical Paper

An Experimental and Numerical Study of the Performance Characteristics of the Diesel Oxidation Catalyst in a Continuously Regenerating Particulate Filter

2003-10-27
2003-01-3176
A one-dimensional model simulating the oxidation of CO, HC, and NO was developed to predict the gaseous emissions downstream of a diesel oxidation catalyst (DOC). The model is based on the conservation of mass, species, and energy inside the DOC and draws on past research literature. Steady-state experiments covering a wide range of operating conditions (exhaust temperatures, flow rates and gaseous emissions) were performed, and the data were used to calibrate and validate the model. NO conversion efficiencies of 50% or higher were obtained at temperatures between 300°C and 350°C. CO conversion efficiencies of 85% or higher and HC conversion efficiencies of 75% or higher were found at every steady state condition above 200°C. The model agrees well with the experimental results at temperatures from 200°C to 500°C, and volumetric flow rates from 8 to 42 actual m3/min.
Technical Paper

The Effects of a Catalyzed Particulate Filter and Ultra Low Sulfur Fuel on Heavy Duty Diesel Engine Emissions

2005-04-11
2005-01-0473
The objective of this research was to study the effect of a catalyzed particulate filter (CPF) with a high loading of catalyst (50 gms/ft3) and ultra low sulfur fuel (ULSF -0.57 ppm of sulfur) on the emissions from a heavy duty diesel engine. The particulate emissions were measured using two different analytical methods, i.e., the gravimetric method and the thermal optical method (TOM). The results from the two different methods of analyses were compared. The experiments were performed at four different operating conditions chosen from the old Environmental Protection Agency (EPA) 13-mode test cycle. A 1995 Cummins M11 heavy-duty engine with manually controlled exhaust gas recirculation (EGR) was used to perform the emission characterization experiments. The emission characterization included total particulate matter (TPM), which is composed of the solids (SOL), soluble organic fractions (SOF) and sulfates (SO4) analyzed using the gravimetric method.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Emissions

2002-03-04
2002-01-1277
A study was conducted to assess the effects of a water-diesel fuel emulsion with and without an oxidation catalytic converter (OCC) on steady-state heavy-duty diesel engine emissions. Two OCCs with different metal loading levels were used in this study. A 1988 Cummins L10-300 heavy-duty diesel engine was operated at the rated speed of 1900 rpm and at 75% and 25% load conditions (EPA modes 9 and 11 respectively) of the 13 mode steady-state test as well as at idle. Raw exhaust emissions' measurements included total hydrocarbons (HC), oxides of nitrogen (NOx) and nitric oxide (NO). Diluted exhaust measurements included total particulate matter (TPM) and its primary constituents, the soluble organic (SOF), sulfate (SO42-) and the carbonaceous solids (SOL) fractions. Vapor phase organic compounds (XOC) were also analyzed. The SOF and XOC samples were analyzed for selected polynuclear aromatic hydrocarbons (PAHs).
Technical Paper

Novel Two-Stroke Engine Concept, Feasibility Study

2003-10-27
2003-01-3211
A novel two-stroke engine concept is introduced. The cylinder scavenging takes place during the upward motion of the piston. The gas exchange valves are similar to typical four-stroke valves, but the intake valves are smaller and lighter. The scavenging air pressure is remarkably higher than in present-day engines. The high scavenging air pressure is produced by an external compressor. The two-stroke operation is achieved without the drawbacks of port scavenged engines. Moreover, the combustion circumstances, charge pressure and temperature and internal exhaust gas re-circulation (EGR) can be controlled by using valve timings. There is good potential for a substantial reduction in NOx emissions through the use of adjustable compression pressure and temperature and by using the adjustable amount of exhaust gas re-circulation.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Journal Article

Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine

2008-10-06
2008-01-2500
Hydrotreating of vegetable oils or animal fats is an alternative process to esterification for producing biobased diesel fuels. Hydrotreated products are also called renewable diesel fuels. Hydrotreated vegetable oils (HVO) do not have the detrimental effects of ester-type biodiesel fuels, like increased NOx emission, deposit formation, storage stability problems, more rapid aging of engine oil or poor cold properties. HVOs are straight chain paraffinic hydrocarbons that are free of aromatics, oxygen and sulfur and have high cetane numbers. In this paper, NOx - particulate emission trade-off and NOx - fuel consumption trade-off are studied using different fuel injection timings in a turbocharged charge air cooled common rail heavy duty diesel engine. Tested fuels were sulfur free diesel fuel, neat HVO, and a 30% HVO + 70% diesel fuel blend. The study shows that there is potential for optimizing engine settings together with enhanced fuel composition.
X