Refine Your Search


Search Results

Technical Paper

On the Suitability of a New High-Power Lithium Ion Battery for Hybrid Electric Vehicle Applications

Due to the low cost of the battery cells and excellent performance at ambient temperature, Lithium-ion (Li-ion) battery is a promising technology for propulsion applications. However, the performance of Li-ion batteries erodes drastically at extreme temperatures (above 65 °C or below 0 °C). Therefore, in order to maintain battery life and performance, it is crucial to keep the batteries within the temperature range where their operating characteristics are optimal. The need for expensive and complex thermal management systems has in fact kept the Li-ion technology from becoming the first choice for Hybrid Electric Vehicle (HEV) applications. In this paper, we propose a Phase Change Material (PCM) for the temperature control. Due to its high heat capacity, PCM absorbs the heat dissipated by the battery. As long as the heat emitted by the battery does not melt the PCM completely, the system is stable.
Technical Paper

Drawbeads in Sheet Metal Stamping - A Review

The paper reviews the role of drawbeads in sheet metal stamping. The design of drawbeads is discussed in depth, with treatment of different bead cross sections, bead end shapes, and bead materials. International standards and practices are included. This is followed by the historical development of the modeling of the drawbead restraining force, starting with basic equilibrium approaches, and leading to the use of the finite element method which permits the study of drawbead effects on sheet metal flow in three dimensions. Finally, the potential of active drawbeads is described based upon ongoing research which is directed toward closed-loop computer control of the stamping process through adjustment of the drawbead penetration.
Technical Paper

Nonlinear Model Predictive Control of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

This paper studies the nonlinear model predictive control for a power-split Hybrid Electric Vehicle (HEV) power management system to improve the fuel economy. In this paper, a physics-based battery model is built and integrated with a base HEV model from Autonomie®, a powertrain and vehicle model architecture and development software from Argonne National Laboratory. The original equivalent circuit battery model from the software has been replaced by a single particle electrochemical lithium ion battery model. A predictive model that predicts the driver’s power request, the battery state of charge (SOC) and the engine fuel consumption is studied and used for the nonlinear model predictive controller (NMPC). A dedicated NMPC algorithm and its solver are developed and validated with the integrated HEV model. The performance of the NMPC algorithm is compared with that of a rule-based controller.
Technical Paper

Real Time Application of Battery State of Charge and State of Health Estimation

A high voltage battery is an essential part of hybrid electric vehicles (HEVs). It is imperative to precisely estimate the state of charge (SOC) and state of health (SOH) of battery in real time to maintain reliable vehicle operating conditions. This paper presents a method of estimating SOC and SOH through the incorporation of current integration, voltage translation, and Ah-throughput. SOC estimation utilizing current integration is inadequate due to the accumulation of errors over the period of usage. Thus voltage translation of SOC is applied to rectify current integration method which improves the accuracy of estimation. Voltage translation data is obtained by subjecting the battery to hybrid pulse power characterization (HPPC) test. The Battery State of Health was determined by semi-empirical model combined with accumulated Ah-throughput method. Battery state of charge was employed as an input to estimate damages accumulated to battery aging through a real-time model.
Technical Paper

Model-Based Analysis of V2G Impact on Battery Degradation

Vehicle-to-Grid (V2G) service has a potential to improve the reliability and stability of the electrical grid due to the ability of providing bi-directional power flow from/to the grid. However, frequent charging/discharging may impact the battery lifetime. This paper presents the analysis of battery degradation in three scenarios. In the first scenario, different battery capacities are considered. In the second scenario, the battery degradation with various depth of discharge (DOD) are studied. In the third scenario, the capacity loss due to different charging regime are compared. The charging/discharging of plug-in electric vehicles (PEVs) are simulated in a single-phase microgrid system integrated with a photovoltaics (PV) farm, an energy storage system (ESS), and ten electric vehicle service equipment (EVSE). The battery degradation model is an energy throughput model, which is developed based on the Arrhenius equation and a power law relationship between time and capacity fading.
Technical Paper

Effect of State of Charge Constraints on Fuel Economy and Battery Aging when Using the Equivalent Consumption Minimization Strategy

Battery State of Charge (SOC) constraints are used to prevent the battery in Hybrid Electric Vehicles (HEVs) from over-charging or over-discharging. These constraints strongly influence the power-split of the HEV. This paper presents results on how Battery State of Charge (SOC) constraints effects Lithium ion battery aging and fuel economy when using the Equivalent Consumption Minimization Strategy (ECMS). The vehicle studied is the Honda Civic Hybrid. The battery used is A123 Systems’ ANR26650 battery cell. Vehicle simulation uses multiple combinations of highway and city drive cycles. For each combination of drive cycles, nine SOC constraints ranges are used. Battery aging is evaluated using a semi-empirical model combined with the accumulated Ah-throughput method which uses, as an input, the battery SOC trajectory from the vehicle simulations. The simulation results provide insight into how SOC constraints effect fuel economy as well as battery aging.
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 2: Prediction and Optimization

Today's engine and combustion process development is closely related to the intake port layout. Combustion, performance and emissions are coupled to the intensity of turbulence, the quality of mixture formation and the distribution of residual gas, all of which depend on the in-cylinder charge motion, which is mainly determined by the intake port and cylinder head design. Additionally, an increasing level of volumetric efficiency is demanded for a high power output. Most optimization efforts on typical homogeneous charge spark ignition (HCSI) engines have been at low loads because that is all that is required for a vehicle to make it through the FTP cycle. However, due to pumping losses, this is where such engines are least efficient, so it would be good to find strategies to allow the engine to operate at higher loads.
Technical Paper

Transient Fuel X-Tau Parameter Estimation Using Short Time Fourier Transform

This paper presents a Short Time Fourier Transform based algorithm to identify unknown parameters in fuel dynamics system during engine cold start and warm-up. A first order system is used to model the fuel dynamics in a port fuel injection engine. The feed forward transient fuel compensation controller is designed based on the identified model. Experiments are designed and implemented to verify the proposed algorithm. Different experiment settings are compared.
Technical Paper

Design, Control, and Power Management of a Battery/Ultra-Capacitor Hybrid System for Small Electric Vehicles

This paper introduces design, control, and power management of a battery/ ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra-capacitors are used to meet the peak power demands during transients. Power management system determines the directions of power flow, according to load demand. Presented analyses validate the efficient power management methodology.
Technical Paper

Simulation of Lithium Ion HEV Battery Aging Using Electrochemical Battery Model under Different Ambient Temperature Conditions

This paper investigates the aging performance of the lithium ion cobalt oxide battery pack of a single shaft parallel hybrid electric vehicle (HEV) under different ambient temperatures. Varying ambient temperature of HEVs results in different battery temperature and then leads to different aging performance of the battery pack. Battery aging is reflected in the increasing of battery internal resistance and the decreasing of battery capacity. In this paper, a single shaft parallel hybrid electric vehicle model is built by integrating Automotive Simulation Model (ASM) from dSPACE and AutoLion-ST battery model from ECPower to realize the co-simulation of HEV powertrain in the common MATLAB/Simulink platform. The battery model is a physics-based and thermally-coupled battery (TCB) model, which enables the investigation of battery capacity degradation and aging. Standard driving cycle with differing ambient temperatures is tested using developed HEV model.
Technical Paper

Easily Verifiable Adaptive Sliding Mode Controller Design with Application to Automotive Engines

Verification and validation (V&V) are essential stages in the design cycle of industrial controllers to remove the gap between the designed and implemented controller. In this study, a model-based adaptive methodology is proposed to enable easily verifiable controller design based on the formulation of a sliding mode controller (SMC). The proposed adaptive SMC improves the controller robustness against major implementation imprecisions including sampling and quantization. The application of the proposed technique is demonstrated on the engine cold start emission control problem in a mid-size passenger car. The cold start controller is first designed in a single-input single-output (SISO) structure with three separate sliding surfaces, and then is redesigned based on a multiinput multi-output (MIMO) SMC design technique using nonlinear balanced realization.
Technical Paper

Case Study of an Electric-Hydraulic Hybrid Propulsion System for a Heavy Duty Electric Vehicle

In order to improve efficiency and increase the operation of electric vehicles, assistive energy regeneration systems can be used. A hydraulic energy recovery system is modeled to be used as a regenerative system for supplementing energy storage for a pure electric articulated passenger bus. In this study a pump/motor machine is modeled to transform kinetic energy into hydraulic energy during braking, to move the hydraulic fluid from the low pressure reservoir to the hydraulic accumulator. The simulation of the proposed system was used to estimate battery savings. It was found that on average, approximately 39% of the battery charge can be saved when using a real bus driving cycle.
Technical Paper

Real-Time Closed-Loop Control of a Light-Duty RCCI Engine During Transient Operations

Real-time control of Reactivity Controlled Compression Ignition (RCCI) during engine load and speed transient operation is challenging, since RCCI combustion phasing depends on nonlinear thermo-kinetic reactions that are controlled by dual-fuel reactivity gradients. This paper discusses the design and implementation of a real-time closed-loop combustion controller to maintain optimum combustion phasing during RCCI transient operations. New algorithms for real-time in-cylinder pressure analysis and combustion phasing calculations are developed and embedded on a Field Programmable Gate Array (FPGA) to compute RCCI combustion and performance metrics on cycle-by-cycle basis. This cycle-by-cycle data is then used as a feedback to the combustion controller, which is implemented on a real-time processor. A computationally efficient algorithm is introduced for detecting Start of Combustion (SOC) for the High Temperature Heat Release (HTHR) or main-stage heat release.
Technical Paper

Global Optimization of a Two-Pulse Fuel Injection Strategy for a Diesel Engine Using Interpolation and a Gradient-Based Method

A global optimization method has been developed for an engine simulation code and utilized in the search of optimal fuel injection strategies. This method uses a Lagrange interpolation function which interpolates engine output data generated at the vertices and the intermediate points of the input parameters. This interpolation function is then used to find a global minimum over the entire parameter set, which in turn becomes the starting point of a CFD-based optimization. The CFD optimization is based on a steepest descent method with an adaptive cost function, where the line searches are performed with a fast-converging backtracking algorithm. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space.
Technical Paper

Research on On-line Monitoring Methods of High Voltage Parameter in Electric Vehicles

Safety control and protection strategy of high-voltage system of electric vehicles include analysis of circuit condition before connection to high voltage terminal, transient current prevention for capacitive load, real-time monitoring and analysis of high-voltage system during operation, disconnecting strategy of high voltage terminals, vehicle dynamic safety and cooperative management of electrical systems, etc. Monitoring and analysis of some critical parameters of high voltage system such as insulation, electrical harness and connector condition are the basis and difficulties in high-voltage safety and protection. This paper presents several mathematical models of monitoring critical parameters, and experiments were also done to evaluate the model. Disadvantages of the commonly used calculation method are discussed. Single point insulation defect model is introduced and diagnosis method of multiple points defect is also discussed.
Technical Paper

Constant Power Load Characteristics in Multi-Converter Automotive Power Electronic Intensive Systems

Intensifying demands for higher fuel economy from one hand and environmental concerns from the other are driving advanced automotive power systems to be more electric. As a result, automotive electrical systems with higher capacity and more complexity are needed to cope with this expanding electrification trend. As different electrical applications and loads are being introduced in automobiles, multi-converter intensive power electronic systems are emerging as the next generation of the advanced automotive electrical systems. In fact, power electronic converters and electric motor drives are inevitable parts of more electric automotive power systems. When power electronic converters and electric motor drives are tightly regulated to improve system performance and efficiency, they present negative impedance characteristics of constant power loads to the entire automotive electrical system. This destabilizing effect may cause system instability.
Technical Paper

Effects of an Ultra-Capacitor and Battery Energy Storage System in a Hybrid Electric Vehicle

This paper focuses on the effects of ultra-capacitors as a component of energy storage in hybrid electric vehicles (HEV). The main energy source in a hybrid vehicle is the battery. HEVs with battery sources are presently fairly effective; however, major drawbacks include the cost and size of such batteries. The purpose of this paper is to demonstrate that the addition of ultra-capacitors as a component of the energy storage system can reduce these drawbacks significantly by reducing the size of batteries required to drive the vehicle. To integrate ultra-capacitors into hybrid vehicles, the ADvanced VehIcle SimulatOR (ADVISOR) was used. The vehicle used to conduct this study was the 2004 Jeep Liberty sport utility vehicle (SUV). To simplify the analysis process, the conventional Jeep Liberty was modeled in ADVISOR to resemble the actual performance specifications of the SUV currently in the market.
Technical Paper

Automotive Interprofessional Projects (IPRO®) Program at Illinois Institute of Technology

The Illinois Institute of Technology (IIT) Interprofessional Projects (IPRO®) Program engages multidisciplinary teams of students in semester-long projects, with a total of thirty to thirty-five different projects offered every semester. This program greatly contributes to IIT's signature undergraduate education experience, with each interprofessional course delivering a team-oriented, project-based requirement within the undergraduate curriculum. Among its many benefits, each interprofessional course offers students the opportunity to integrate the education and research environment of the university to tackle real-world problems. In the process, students get the chance to develop and emerge from the experience with maturity, confidence, and valuable professional skills that are highly sought after in the workplace, simultaneously preparing them for the realities of today's global, highly-competitive environment [1].
Technical Paper

42V Integrated Starter/Alternator Systems

The increasing power demand in vehicles has resulted in a need for a higher onboard generation capacity. With the increasing generation requirement, the torque levels of the generator are found to closely converge with that of the starter motor. Hence, integrating the two machines and using a single machine for the two purposes would be technically viable and economically advantageous. This results in a more compact design solution as well. The Integrated Starter/Alternator (ISA) will be integrated directly to the crankshaft of the Internal Combustion Engine (ICE) and deliver 5 kW average and 12-15 kW peak power at 42V.
Technical Paper

Design and Implementation of a Mobile Single-Phase AC Power Supply for Land Vehicles with 28V/200V Dual Voltage Alternators

In land vehicles with high-power electrical loads, other than the low-voltage DC bus (14V, 28V, or 42V) for the low-power conventional loads, a high-voltage bus, e.g., 200V DC, is required for high-power loads such as hotel loads and electrically-assisted propulsion systems. In addition, some advanced electrical loads including luxury loads and AC power point require 120V, 60Hz AC voltage. These land vehicles include heavy duty, fire fighting, and military vehicles. There are two traditional approaches in obtaining a dual DC voltage bus system. The first one is to obtain the low-voltage DC from the alternator and boost it to the high-voltage DC. The second method is to obtain the high-voltage DC directly from the alternator and reduce it to the low-voltage. Both approaches require additional step-up or step-down power conversion stages, which inherently result in a reduced efficiency. In this paper, a new approach with a 28V/200V dual voltage alternator is considered.