Refine Your Search

Topic

Author

Search Results

Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

The Visualization of Soot Late in the Diesel Combustion Process by Laser Induced Incandescence with a Vertical Laser Sheet

2015-04-14
2015-01-0801
Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
Technical Paper

Mobile Robot Localization Evaluations with Visual Odometry in Varying Environments Using Festo-Robotino

2020-04-14
2020-01-1022
Autonomous ground vehicles can use a variety of techniques to navigate the environment and deduce their motion and location from sensory inputs. Visual Odometry can provide a means for an autonomous vehicle to gain orientation and position information from camera images recording frames as the vehicle moves. This is especially useful when global positioning system (GPS) information is unavailable, or wheel encoder measurements are unreliable. Feature-based visual odometry algorithms extract corner points from image frames, thus detecting patterns of feature point movement over time. From this information, it is possible to estimate the camera, i.e., the vehicle’s motion. Visual odometry has its own set of challenges, such as detecting an insufficient number of points, poor camera setup, and fast passing objects interrupting the scene. This paper investigates the effects of various disturbances on visual odometry.
Technical Paper

Prediction of Combustion Phasing Using Deep Convolutional Neural Networks

2020-04-14
2020-01-0292
A Machine Learning (ML) approach is presented to correlate in-cylinder images of early flame kernel development within a spark-ignited (SI) gasoline engine to early-, mid-, and late-stage flame propagation. The objective of this study was to train machine learning models to analyze the relevance of flame surface features on subsequent burn rates. Ultimately, an approach of this nature can be generalized to flame images from a variety of sources. The prediction of combustion phasing was formulated as a regression problem to train predictive models to supplement observations of early flame kernel growth. High-speed images were captured from an optically accessible SI engine for 357 cycles under pre-mixed operation. A subset of these images was used to train three models: a linear regression model, a deep Convolutional Neural Network (CNN) based on the InceptionV3 architecture and a CNN built with assisted learning on the VGG19 architecture.
Technical Paper

Process Control Standards for Technology Development

1998-04-08
981502
Engineering new technology and products challenges managers to balance design innovation and program risk. To do this, managers need methods to judge future results to avoid program and product disasters. Besides the traditional prediction tools of schedule, simulations and “iron tests”, process control standards (with measurements) can also be applied to the development programs to mitigate risks. This paper briefly discusses the theory and case history behind some new process control methods and standards currently in place at Caterpillar's Electrical & Electronics department. Process standards reviewed in this paper include process mapping, ISO9001, process controls, and process improvement models (e.g. SEI's CMMs.)
Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

Simulation of Non-Evaporating Diesel Sprays and Verification with Experimental Data

2002-03-04
2002-01-0946
Non-evaporating diesel sprays have been simulated utilizing the ETAB and the WAVE atomization and breakup models and have been compared with experimental data. The experimental penetrations and widths were determined from back-lit spray images and the droplet sizes have been measured by means of a Malvern particle sizer. The model evaluation criteria include the spray penetration, the spray width and the local droplet size. The comparisons have been performed for variations of the injection pressure, the gas density and the fuel viscosity. The fuel nozzle exit velocities used in the simulations have been computed with a special code that considers the effect of in-nozzle cavitation. The simulations showed good overall agreement with experimental data. However, the capabilities of the models to predict the droplet size for different fuels could be improved.
Technical Paper

Effect of Combustion on Diesel Spray Penetrations in Relation to Vaporizing, Non-Reacting Sprays

2016-10-17
2016-01-2201
Extensive studies have addressed diesel sprays under non-vaporizing, vaporizing and combusting conditions respectively, but further insights into the mechanism by which combustion alters the macroscopic characteristics including the spray penetration and the shape of the spray under diesel engine conditions are needed. Contradictory observations are reported in the literature regarding the combusting diesel spray penetration compared to the inert conditions, and it is an objective of this study to provide further insights and analyses on the combusting spray characteristics by expanding the range of operating parameters. Parameters varied in the studies are charge gas conditions including oxygen levels of 0 %, 15%, 19%, charge densities of 22.8 & 34.8 kg/m3, and charge temperatures of 800, 900 & 1050 K for injection pressures of 1200, 1500, and 1800 bar with a single-hole injector with a nozzle diameter of 100 μm.
Technical Paper

Application of Suspend Mode to Automotive ECUs

2018-04-03
2018-01-0021
To achieve high robustness and quality, automotive ECUs must initialize from low-power states as quickly as possible. However, microprocessor and memory advances have failed to keep pace with software image size growth in complex ECUs such as in Infotainment and Telematics. Loading the boot image from non-volatile storage to RAM and initializing the software can take a very long time to show the first screen and result in sluggish performance for a significant time thereafter which both degrade customer perceived quality. Designers of mobile devices such as portable phones, laptops, and tablets address this problem using Suspend mode whereby the main processor and peripheral devices are powered down during periods of inactivity, but memory contents are preserved by a small “self-refresh” current. When the device is turned back “on”, fully initialized memory content allows the system to initialize nearly instantaneously.
Technical Paper

Correlations of Non-Vaporizing Spray Penetration for 3000 Bar Diesel Spray Injection

2013-09-08
2013-24-0033
Increasing fuel injection pressure has enabled reduction of diesel emissions while retaining the advantage of the high thermal efficiency of diesel engines. With production diesel injectors operating in the range from 300 to 2400 bar, there is interest in injection pressures of 3000 bar and higher for further emissions reduction and fuel efficiency improvements. Fundamental understanding of diesel spray characteristics including very early injection and non-vaporizing spray penetration is essential to improve model development and facilitate the integration of advanced injection systems with elevated injection pressure into future diesel engines. Studies were conducted in an optically accessible constant volume combustion vessel under non-vaporizing conditions. Two advanced high pressure multi-hole injectors were used with different hole diameters, number of holes, and flow rates, with only one plume of each injector being imaged to enable high frame rate imaging.
Technical Paper

Influence of the Nozzle Geometry of a Diesel Single-Hole Injector on Liquid and Vapor Phase Distributions at Engine-Like Conditions

2013-09-08
2013-24-0038
The paper describes an experimental activity on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel at engine-like conditions. The influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio) has been studied by spraying fuel in an optically-accessible constant-volume combustion vessel. A high-speed imaging system, capable of acquiring Mie-scattering and Schlieren images in a near simultaneous fashion mode along the same line of sight, has been developed at the Michigan Technological University using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies have been performed at three injection pressures (70, 120 and 180 MPa), 23.9 kg/m3 ambient gas density and 900 K gas temperature in the vessel.
Technical Paper

Measured and LES Motored-Flow Kinetic Energy Evolution in the TCC-III Engine

2018-04-03
2018-01-0192
A primary goal of large eddy simulation, LES, is to capture in-cylinder cycle-to-cycle variability, CCV. This is a first step to assess the efficacy of 35 consecutive computed motored cycles to capture the kinetic energy in the TCC-III engine. This includes both the intra-cycle production and dissipation as well as the kinetic energy CCV. The approach is to sample and compare the simulated three-dimensional velocity equivalently to the available two-component two-dimensional PIV velocity measurements. The volume-averaged scale-resolved kinetic energy from the LES is sampled in three slabs, which are volumes equal to the two axial and one azimuthal PIV fields-of-view and laser sheet thickness. Prior to the comparison, the effects of sampling a cutting plane versus a slab and slabs of different thicknesses are assessed. The effects of sampling only two components and three discrete planar regions is assessed.
Technical Paper

Comparison of Single Gear Tooth and Cantilever Beam Bending Fatigue Testing of Carburized Steel

1995-02-01
950212
The bending fatigue performance of gears, cantilever beam specimens, and notched-axial specimens were evaluated and compared. Specimens were machined from a modified SAE-4118 steel, gas-carburized, direct-quenched and tempered. Bending fatigue specimens were characterized by light metallography to determine microstructure and prior austenite grain size, x-ray analysis for residual stress and retained austenite measurements, and scanning electron microscopy to evaluate fatigue crack initiation, propagation and overload. The case and core microstructures, prior austenite grain sizes and case hardness profiles from the various types of specimens were similar. Endurance limits were determined to be about 950 MPa for both the cantilever beam and notched-axial fatigue specimens, and 1310 MPa for the single gear tooth specimens.
Technical Paper

Determination of Vehicle Frontal Area Using Image Processing

2013-04-08
2013-01-0203
The projected frontal area of a vehicle has a significant impact on aerodynamic drag, and thus is an important parameter, for vehicle development, benchmarking, and modeling. However, determining vehicle frontal area can be tedious, time consuming, expensive, or inaccurate. Existing methods include analysis of engineering drawings, vehicle projections, 3D scanners, planimeter measurements from photographs, and estimations using vehicle dimensions. Currently accepted approximation methods can be somewhat unreliable. This study focuses on introducing a method to find vehicle frontal area using digital images and subtraction functions via MATLABs' Image Processing Toolbox. In addition to an overview of the method, this paper describes several variables that were examined to optimize and improve the process such as camera position, surface glare, and vehicle shadow effects.
Technical Paper

An Experimental Investigation of In-Cylinder Processes Under Dual-Injection Conditions in a DI Diesel Engine

2004-06-08
2004-01-1843
Fuel-injection schedules that use two injection events per cycle (“dual-injection” approaches) have the potential to simultaneously attenuate engine-out soot and NOx emissions. The extent to which these benefits are due to enhanced mixing, low-temperature combustion modes, altered combustion phasing, or other factors is not fully understood. A traditional single-injection, an early-injection-only, and two dual-injection cases are studied using a suite of imaging diagnostics including spray visualization, natural luminosity imaging, and planar laser-induced fluorescence (PLIF) imaging of nitric oxide (NO). These data, coupled with heat-release and efficiency analyses, are used to enhance understanding of the in-cylinder processes that lead to the observed emissions reductions.
Technical Paper

Investigation of Flow Conditions and Tumble near the Spark Plug in a DI Optical Engine at Ignition

2018-04-03
2018-01-0208
Tumble motion plays a significant role in modern spark-ignition engines in that it promotes mixing of air/fuel for homogeneous combustion and increases the flame propagation speed for higher thermal efficiency and lower combustion variability. Cycle-by-cycle variations in the flow near the spark plug introduce variability to the initial flame kernel development, stretching, and convection, and this variability is carried over to the entire combustion process. The design of current direct-injection spark-ignition engines aims to have a tumble flow in the vicinity of the spark plug at the time of ignition. This work investigates how the flow condition changes in the vicinity of the spark plug throughout the late compression stroke via high-speed imaging of a long ignition discharge arc channel and its stretching, and via flow field measurement by particle imaging velocimetry.
Technical Paper

Characterization of Impingement Dynamics of Single Droplet Impacting on a Flat Surface

2019-01-15
2019-01-0064
The liquid fuel spray impingement onto surfaces occurs in both spark ignited and compression ignited engines. It causes a fundamental issue affecting the preparation of air-fuel mixture prior to the combustion, further, affecting engine performance and emissions. To better understand the underlying mechanism of spray interaction with a solid surface, the physics of a single droplet impact on a heated surface was experimentally investigated. The experimental work was conducted at four surface temperatures where a single diesel droplet was injected from a precision syringe pump with a specific droplet diameter and impact velocity. A high-speed camera was used to visualize the droplet impingement process. Images from the selected test condition (We = 52 to 925, Re = 789 to 3330 based on initial droplet impingement parameters) were analyzed to qualify the impinging outcomes and quantify the post-impingement characteristics.
Technical Paper

Limitations of Sector Mesh Geometry and Initial Conditions to Model Flow and Mixture Formation in Direct-Injection Diesel Engines

2019-04-02
2019-01-0204
Sector mesh modeling is the dominant computational approach for combustion system design optimization. The aim of this work is to quantify the errors descending from the sector mesh approach through three geometric modeling approaches to an optical diesel engine. A full engine geometry mesh is created, including valves and intake and exhaust ports and runners, and a full-cycle flow simulation is performed until fired TDC. Next, an axisymmetric sector cylinder mesh is initialized with homogeneous bulk in-cylinder initial conditions initialized from the full-cycle simulation. Finally, a 360-degree azimuthal mesh of the cylinder is initialized with flow and thermodynamics fields at IVC mapped from the full engine geometry using a conservative interpolation approach. A study of the in-cylinder flow features until TDC showed that the geometric features on the cylinder head (valve tilt and protrusion into the combustion chamber, valve recesses) have a large impact on flow complexity.
Technical Paper

Statistical Models of RADAR and LIDAR Returns from Deer for Active Safety Systems

2016-04-05
2016-01-0113
Based on RADAR and LiDAR measurements of deer with RADAR and LiDAR in the Spring and Fall of 2014 [1], we report the best fit statistical models. The statistical models are each based on time-constrained measurement windows, termed test-points. Details of the collection method were presented at the SAE World Congress in 2015. Evaluation of the fitness of various statistical models to the measured data show that the LiDAR intensity of reflections from deer are best estimated by the extreme value distribution, while the RCS is best estimated by the log-normal distribution. The value of the normalized intensity of the LiDAR ranges from 0.3 to 1.0, with an expected value near 0.7. The radar cross-section (RCS) varies from -40 to +10 dBsm, with an expected value near -14 dBsm.
X