Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Effects of Different Input Excitation on the Dynamic Characterization of an Automotive Shock Absorber

2001-04-30
2001-01-1442
This paper deals with the dynamic characterization of an automotive shock absorber, a continuation of an earlier work [1]. The objective of this on-going research is to develop a testing and analysis methodology for obtaining dynamic properties of automotive shock absorbers for use in CAE-NVH low-to-mid frequency chassis models. First, the effects of temperature and nominal length on the stiffness and damping of the shock absorber are studied and their importance in the development of a standard test method discussed. The effects of different types of input excitation on the dynamic properties of the shock absorber are then examined. Stepped sine sweep excitation is currently used in industry to obtain shock absorber parameters along with their frequency and amplitude dependence. Sine-on-sine testing, which involves excitation using two different sine waves has been done in this study to understand the effects of the presence of multiple sine waves on the estimated dynamic properties.
Technical Paper

Material Damping Properties: A Comparison of Laboratory Test Methods and the Relationship to In-Vehicle Performance

2001-04-30
2001-01-1466
This paper presents the damping effectiveness of free-layer damping materials through standard Oberst bar testing, solid plate excitation (RTC3) testing, and prediction through numerical schemes. The main objective is to compare damping results from various industry test methods to performance in an automotive body structure. Existing literature on laboratory and vehicle testing of free-layer viscoelastic damping materials has received significant attention in recent history. This has created considerable confusion regarding the appropriateness of different test methods to measure material properties for damping materials/treatments used in vehicles. The ability to use the material properties calculated in these tests in vehicle CAE models has not been extensively examined. Existing literature regarding theory and testing for different industry standard damping measurement techniques is discussed.
Technical Paper

LES and RNG Turbulence Modeling in DI Diesel Engines

2003-03-03
2003-01-1069
The one-equation subgrid scale model for the Large Eddy Simulation (LES) turbulence model has been compared to the popular k-ε RNG turbulence model in very different sized direct injection diesel engines. The cylinder diameters of these engines range between 111 and 200 mm. This has been an initial attempt to study the effect of LES in diesel engines without any modification to the combustion model being used in its Reynolds-averaged Navier-Stokes (RANS) form. Despite some deficiencies in the current LES model being used, it already gave much more structured flow field with approximately the same kind of accuracy in the cylinder pressure predictions than the k-ε RNG turbulence model.
Technical Paper

On the Suitability of a New High-Power Lithium Ion Battery for Hybrid Electric Vehicle Applications

2003-06-23
2003-01-2289
Due to the low cost of the battery cells and excellent performance at ambient temperature, Lithium-ion (Li-ion) battery is a promising technology for propulsion applications. However, the performance of Li-ion batteries erodes drastically at extreme temperatures (above 65 °C or below 0 °C). Therefore, in order to maintain battery life and performance, it is crucial to keep the batteries within the temperature range where their operating characteristics are optimal. The need for expensive and complex thermal management systems has in fact kept the Li-ion technology from becoming the first choice for Hybrid Electric Vehicle (HEV) applications. In this paper, we propose a Phase Change Material (PCM) for the temperature control. Due to its high heat capacity, PCM absorbs the heat dissipated by the battery. As long as the heat emitted by the battery does not melt the PCM completely, the system is stable.
Technical Paper

Drawbeads in Sheet Metal Stamping - A Review

1997-02-24
970986
The paper reviews the role of drawbeads in sheet metal stamping. The design of drawbeads is discussed in depth, with treatment of different bead cross sections, bead end shapes, and bead materials. International standards and practices are included. This is followed by the historical development of the modeling of the drawbead restraining force, starting with basic equilibrium approaches, and leading to the use of the finite element method which permits the study of drawbead effects on sheet metal flow in three dimensions. Finally, the potential of active drawbeads is described based upon ongoing research which is directed toward closed-loop computer control of the stamping process through adjustment of the drawbead penetration.
Technical Paper

Convergence of Laboratory Simulation Test Systems

1998-02-23
981018
Laboratory Simulation Testing is widely accepted as an effective tool for validation of automotive designs. In a simulation test, response data are measured whilst a vehicle is in service or tested at a proving ground. These responses are reproduced in the laboratory by mounting the vehicle or a subassembly of the vehicle in a test rig and applying force and displacements by servo hydraulic actuators. The data required as an input to the servo hydraulics, the drive files, are determined by an iterative procedure which overcomes the non linearity in the test specimen and the test rig system. Under certain circumstances, the iteration does not converge, converges too slowly or converges and then diverges. This paper uses mathematical and computer models in a study of the reasons why systems fail to convergence and makes recommendations about the management of the simulation test.
Technical Paper

A Modular Approach to Powertrain Modeling and Shift Quality Analysis

1995-02-01
950419
A library of macro modules has been written that represent elements common to powertrains of off-highway equipment with diesel powerplants and powershift transmissions. This library allows users to easily and quickly develop complex models of a wide range of vehicle and transmission configurations. These simulation models can be used to evaluate dynamic loadings on the powertrain components, evaluate shift quality, develop control systems and address other powertrain dynamic problems. The library makes use of EASY5 simulation language features to effectively handle such drivetrain nonlinearities as backlash, coulomb friction and hard stops.
Technical Paper

A Comparison of Time-Averaged Piston Temperatures and Surface Heat Flux Between a Direct-Fuel Injected and Carbureted Two-Stroke Engine

1998-02-23
980763
Time-averaged temperatures at critical locations on the piston of a direct-fuel injected, two-stroke, 388 cm3, research engine were measured using an infrared telemetry device. The piston temperatures were compared to data [7] of a carbureted version of the two-stroke engine, that was operated at comparable conditions. All temperatures were obtained at wide open throttle, and varying engine speeds (2000-4500 rpm, at 500 rpm intervals). The temperatures were measured in a configuration that allowed for axial heat flux to be determined through the piston. The heat flux was compared to carbureted data [8] obtained using measured piston temperatures as boundary conditions for a computer model, and solving for the heat flux. The direct-fuel-injected piston temperatures and heat fluxes were significantly higher than the carbureted piston. On the exhaust side of the piston, the direct-fuel injected piston temperatures ranged from 33-73 °C higher than the conventional carbureted piston.
Technical Paper

A New Multi-point Active Drawbead Forming Die: Model Development for Process Optimization

1998-02-01
980076
A new press/die system for restraining force control has been developed in order to facilitate an increased level of process control in sheet metal forming. The press features a built-in system for controlling drawbead penetration in real time. The die has local force transducers built into the draw radius of the lower tooling. These sensors are designed to give process information useful for the drawbead control. This paper focuses on developing models of the drawbead actuators and the die shoulder sensors. The actuator model is useful for developing optimal control methods. The sensor characterization is necessary in order to develop a relationship between the raw sensor outputs and a definitive process characteristic such as drawbead restraining force (DBRF). Closed loop control of local specific punch force is demonstrated using the die shoulder sensor and a PID controller developed off-line with the actuator model.
Technical Paper

A 2-D Computational Model Describing the Flow and Filtration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980545
A 2-D computational model was developed to describe the flow and filtration processes, in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state trap loading, as well as the transient behavior of the flow and filtration processes. The theoretical model includes the effect of a copper fuel additive on trap loading and transient operation. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations. The filtration theory incorporated in the time dependent numerical code included the diffusion, inertia, and direct interception mechanisms. Based on a measured upstream particle size distribution, using the filtration theory, the downstream particle size distribution was calculated. The theoretical filtration efficiency, based on particle size distribution, agreed very well (within 1%) with experimental data for a number of different cases.
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

The Dimensionless Correlation of Airflow for Vehicle Engine Cooling Systems

1991-02-01
910643
An analysis of vehicle engine cooling airflow by means of a one-dimensional, transient, compressible flow model was carried out and revealed that similarity theory could be applied to investigate the variation of the airflow with ambient and operating conditions. It was recognized that for a given vehicle engine cooling system, the cooling airflow behavior could be explained using several dimensionless parameters that involve the vehicle speed, fan speed, heat transfer rate through the radiator, ambient temperature and pressure, and the system characteristic dimension. Using the flow resistance and fan characteristics measured from a prototype cooling system and the computer simulation for the one-dimensional compressible flow model, a quantitative correlation of non-dimensional mass flow rate to three dimensionless parameters for a prototype heavy-duty truck was established. The results are presented in charts, tables, and formulas.
Technical Paper

Equation-Based Compressor and Turbine Modeling for Variable Geometry Turbochargers

2018-04-03
2018-01-0966
As modern engines are being downsized, turbochargers are becoming increasingly common. The operation of turbochargers is usually captured by a map provided by the manufacturer. However, the complexity of these maps makes them difficult to use for turbocharger estimation and control strategies. This work focuses on a method that is able to reduce the compressor and turbine maps from a cloud of points into a set of equations. This is accomplished by defining a series of non-dimensional and normalized variables that define a plane transformation. In this new plane, all the points of the map converge approximately into a line and the equation for this line can be found using a least square regression. While this strategy has been used previously, this work includes additional variables as well as an optimization process, which proved to be better at replicating the original maps than existing methods.
Technical Paper

Novel Approach to Integration of Turbocompounding, Electrification and Supercharging Through Use of Planetary Gear System

2018-04-03
2018-01-0887
Technologies that provide potential for significant improvements in engine efficiency include, engine downsizing/downspeeding (enabled by advanced boosting systems such as an electrically driven compressor), waste heat recovery through turbocompounding or organic Rankine cycle and 48 V mild hybridization. FEV’s Integrated Turbocompounding/Waste Heat Recovery (WHR), Electrification and Supercharging (FEV-ITES) is a novel approach for integration of these technologies in a single unit. This approach provides a reduced cost, reduced space claim and an increase in engine efficiency, when compared to the independent integration of each of these technologies. This approach is enabled through the application of a planetary gear system. Specifically, a secondary compressor is connected to the ring gear, a turbocompounding turbine or organic Rankine cycle (ORC) expander is connected to the sun gear, and an electric motor/generator is connected to the carrier gear.
Technical Paper

The Adaptive Cycle Engines

2018-04-03
2018-01-0883
Traditionally, internal combustion engines follow thermodynamic cycles comprising a fixed number of crank revolutions, in order to accommodate compression of the incoming air as well as expansion of the combustion products. With the advent of computer-controlled valve trains, we now have the possibility of detaching compression from expansion events, thus achieving an “adaptive cycle” molded to the performance required of the engine at any given time. The adaptive cycle engine differs from split-cycle engines in that all phases of the cycle take place within the same cylinder, so that in an extreme case the gas contained in all cylinders can be undergoing expansion events, resulting in a large increase in power density over the conventional four-stroke and two-stroke cycles. Key to the adaptive cycle is the addition of a variable-timing “transfer” valve to each cylinder, plus a space for air storage between compression and expansion events.
Technical Paper

The Effects of a Porous Ceramic Particulate Trap on the Physical, Chemical and Biological Character of Diesel Particulate Emissions

1983-02-01
830457
Physical, chemical, and biological characterization data for the particulate emissions from a Caterpillar 3208 diesel engine with and without Corning porous ceramic particulate traps are presented. Measurements made at EPA modes 3,4,5,9,lO and 11 include total hydrocarbon, oxides of nitrogen and total particulate matter emissions including the solid fraction (SOL), soluble organic fraction (SOF) and sulfate fraction (SO4), Chemical character was defined by fractionation of the SOF while biological character was defined by analysis of Ames Salmonella/ microsome bioassay data. The trap produced a wide range of total particulate reduction efficiencies (0-97%) depending on the character of the particulate. The chemical character of the SOF was significantly changed through the trap as was the biological character. The mutagenic specific activity of the SOF was generally increased through the trap but this was offset by a decrease in SOF mass emissions.
Technical Paper

A Model and the Methodology for Determining Wear Particle Generation Rate and Filter Efficiency in a Diesel Engine Using Ferrography

1982-02-01
821195
Monitoring of the wear rate of a diesel engine will yield valuable information regarding the wear mechanism within a diesel engine and ultimately will improve the predictions of failing engines and/or their components to allow preventive maintenance which will prolong the life of the engine. A mathematical model was developed that describes the wear particle concentration as a function of time in a diesel engine. This model contains engine and lubrication system parameters that determine the concentration of wear particles in the engine sump. These variables are the oil system volume, oil flow rate, particle generation rate, filtering efficiency and the initial particle concentration. The model has been employed to study the wear particle concentrations in the sump and the mass of particles in the filter for the Cummins VT-903 diesel engine.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

Transient Fuel X-Tau Parameter Estimation Using Short Time Fourier Transform

2008-04-14
2008-01-1305
This paper presents a Short Time Fourier Transform based algorithm to identify unknown parameters in fuel dynamics system during engine cold start and warm-up. A first order system is used to model the fuel dynamics in a port fuel injection engine. The feed forward transient fuel compensation controller is designed based on the identified model. Experiments are designed and implemented to verify the proposed algorithm. Different experiment settings are compared.
Technical Paper

Modeling, Design and Validation of an Exhaust Muffler for a Commercial Telehandler

2009-05-19
2009-01-2047
This paper describes the design, development and validation of a muffler for reducing exhaust noise from a commercial tele-handler. It also describes the procedure for modeling and optimizing the exhaust muffler along with experimental measurement for correlating the sound transmission loss (STL). The design and tuning of the tele-handler muffler was based on several factors including overall performance, cost, weight, available space, and ease of manufacturing. The analysis for predicting the STL was conducted using the commercial software LMS Virtual Lab (LMS-VL), while the experimental validation was carried out in the laboratory using the two load setup. First, in order to gain confidence in the applicability of LMS-VL, the STL of some simple expansion mufflers with and without extended inlet/outlet and perforations was considered. The STL of these mufflers were predicted using the traditional plane wave transfer matrix approach.
X