Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Engine Test for DOC Quenching in DOC-DPF System for Non-Road Applications

2010-04-12
2010-01-0815
The use of a diesel oxidation catalyst (DOC) in conjunction with a diesel particulate filter (DPF) is now a well-established aftertreatment system design for on-road heavy duty diesel. For non-road applications, the DOC must respond to the need for performance under more diverse and less favorable conditions, such as operation at low loads in cold weather. To choose a DOC technology for such applications, one must have practical and meaningful tests that address the specific catalytic functions of interest such as hydrocarbon oxidation to produce heat for regenerating DPF. This paper describes the development of an engine test protocol that focuses on resistance to the phenomenon known as quenching, the cessation of hydrocarbon (HC) oxidation that occurs when the exhaust temperature decreases below the light-off temperature of the catalyst. During development, the sensitivity and repeatability of the test were carefully scrutinized.
Technical Paper

Engine Test Protocol for Accelerated Ash Loading of a Diesel Particulate Filter

2011-04-12
2011-01-0607
Diesel particulate filters with a quantity of ash corresponding to the service interval (4500 hours) are needed to verify that soot loading model predictions remain accurate as ash accumulates in the DPF. Initially, long-term engine tests carried out for the purpose of assessing engine and aftertreatment system durability provided ash-loaded DPFs for model verification. However, these DPFs were found to contain less ash than expected based on lube oil consumption, and the ash was distributed uniformly along the length of the inlet channels, as opposed to being in the form of a plug at the outlet end of those channels. Thus, a means of producing DPFs with higher quantities of ash, distributed primarily as plugs, was required. An engine test protocol was developed for this purpose; it included the following: 1) controlled dosing of lube oil into the fuel feeding the engine, 2) formation of a soot cake within the DPF, and 3) periodic active regenerations to eliminate the soot cake.
Technical Paper

Characterization of DPF Ash for Development of DPF Regeneration Control and Ash Cleaning Requirements

2011-04-12
2011-01-1248
The accumulation of ash in a Diesel Particulate Filter (DPF) eventually results in an increase in the pressure drop across the exhaust system component. This situation translates into a reduced capacity for soot, and requires an increased frequency of active regenerations to eliminate this soot. For heavy duty diesel applications, the lifetime of the DPF is long enough to expect that cleaning of the ash from the DPF will be required. The physico-chemical characteristics of the ash as a function of temperature and time will have an impact on the effectiveness of this cleaning. To develop a deeper understanding of this subject, four different samples of ash were characterized in this study that were collected under active or passive regeneration from exhaust systems of engines running on different fuels: ultra low sulfur diesel (ULSD), and biodiesel fuels B20 and B100. The lubricant, an API CJ-4 oil, was used for each engine test.
X