Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Cascade Atomization and Drop Breakup Model for the Simulation of High-Pressure Liquid Jets

2003-03-03
2003-01-1044
A further development of the ETAB atomization and drop breakup model for high pressure-driven liquid fuel jets, has been developed, tuned and validated. As in the ETAB model, this breakup model reflects a cascade of drop breakups, where the breakup criterion is determined by the Taylor drop oscillator and each breakup event resembles experimentally observed breakup mechanisms. A fragmented liquid core due to inner-nozzle disturbances is achieved by injecting large droplets subject to this breakup cascade. These large droplets are equipped with appropriate initial deformation velocities in order to obtain experimentally observed breakup lengths. In contrast to the ETAB model which consideres only the bag breakup or the stripping breakup mechanism, the new model has been extended to include the catastrophic breakup regime. In addition, a continuity condition on the breakup parameters has lead to the reduction of one model constant.
Technical Paper

Optimization of Fuel Injection Configurations for the Reduction of Emissions and Fuel Consumption in a Diesel Engine Using a Conjugate Gradient Method

2005-04-11
2005-01-1244
The objective of this study is the development of a computationally efficient CFD-based tool with the capability of finding optimal engine operating conditions with respect to emissions and fuel consumption. The approach taken uses a conjugate gradient method, where the line search is performed with a backtracking algorithm. The initial backtracking step employs an adaptive step size mechanism which depends on the steepness of the search direction. The engine simulations are performed with a KIVA-3-based code which is equipped with well-established spray, combustion and emission models. The cost function is based on the idea of the penalty method and is minimized over the unit cube in n-dimensional space, which represents the set of normalized injection parameters under investigation. The application of this optimization tool is demonstrated for the Sulzer S20, a central-injection, non-road DI diesel engine.
Technical Paper

Assessment of CFD Methods for Large Diesel Engines Equipped with a Common Rail Injection System

2000-03-06
2000-01-0948
A KIVA-based CFD tool has been utilized to simulate the effect of a Common-Rail injection system applied to a large, uniflow-scavenged, two-stroke diesel engine. In particular, predictions for variations of injection pressure and injection duration have been validated with experimental data. The computational models have been evaluated according to their predictive capabilities of the combustion behavior reflected by the pressure and heat release rate history and the effects on nitric oxide formation and wall temperature trends. In general, the predicted trends are in good agreement with the experimental observations, thus demonstrating the potential of CFD as a design tool for the development of large diesel engines equipped with Common-Rail injection. Existing deficiencies are identified and can be explained in terms of model limitations, specifically with respect to the description of turbulence and combustion chemistry.
Technical Paper

Non-Equilibrium Turbulence Considerations for Combustion Processes in the Simulation of DI Diesel Engines

2000-03-06
2000-01-0586
A correction for the turbulence dissipation, based on non-equilibrium turbulence considerations from rapid distortion theory, has been derived and implemented in combination with the RNG k - ε model in a KIVA-based code. This model correction has been tested and compared with the standard RNG k - ε model for the compression and the combustion phase of two heavy duty DI diesel engines. The turbulence behavior in the compression phase shows clear improvements over the standard RNG k - ε model computations. In particular, the macro length scale is consistent with the corresponding time scale and with the turbulent kinetic energy over the entire compression phase. The combustion computations have been performed with the characteristic time combustion model. With this dissipation correction no additional adjustments of the turbulent characteristic time model constant were necessary in order to match experimental cylinder pressures and heat release rates of the two engines.
X