Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Codes and Standards – Global Harmonization

2011-11-18
Electric vehicle codes and standards play a key role in deployment of interoperable charging and communication infrastructure. Harmonization of those standards on a global basis, even though they are not identical, they need to be compatible. There are a comprehensive set of EV standards, even standards to ensure that the EV, EVSE, energy measurement and electric utility are compatible (SAE J2953). This presentation is a summary of the state of standards and some of the commercial deployment of equipment that meets these standards. Presenter Eric Rask, Argonne National Laboratory
Video

Beyond MPG: Characterizing and Conveying the Efficiency of Advanced Plug-In Vehicles 

2011-11-08
Research in plug in vehicles (PHEV and BEV) has of course been ongoing for decades, however now that these vehicles are finally being produced for a mass market an intense focus over the last few years has been given to proper evaluation techniques and standard information to effectively convey efficiency information to potential consumers. The first challenge is the development of suitable test procedures. Thanks to many contributions from SAE members, these test procedures have been developed for PHEVs (SAE J1711 now available) and are under development for BEVs (SAE J1634 available later this year). A bigger challenge, however, is taking the outputs of these test results and dealing with the issue of off-board electrical energy consumption in the context of decades-long consumer understanding of MPG as the chief figure of merit for vehicle efficiency.
Video

Comparison of Powertrain Configuration Options for Plug-in HEVs from a Fuel Economy Perspective

2012-05-25
The first commercially available plug-in hybrid electric vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in mid-December 2010. The Volt uses a series-split powertrain architecture, which provides benefits over the series architecture that typically has been considered for use in electric-range extended vehicles (EREVs). A specialized EREV powertrain, called the Voltec, drives the Volt through its entire range of speed and acceleration with battery power alone and within the limit of battery energy, thereby displacing more fuel with electricity than a PHEV, which characteristically blends electric and engine power together during driving. This paper assesses the benefits and drawbacks of these two different plug-in hybrid electric architectures (series versus series-split) by comparing component sizes, system efficiency, and fuel consumption over urban and highway drive cycles.
Video

Technical Keynote - Introduction to EcoCAR The NeXt Challenge Year Three: Vehicle Refinement and Testing

2012-06-06
This presentation will introduce the overall goals of the EcoCAR competition in brief, and will go into the third and final year of the competition in detail. The final year of competition saw teams refining and testing their student-built advanced technology vehicles including hybrids, plug-in hybrids, hydrogen fuel cell PHEVs and one battery electric. Important events, such as the Spring Workshop chassis dynamometer testing event at the U.S. Environmental Protection agency, as well as significant competition results, such as vehicle performance, consumer acceptability and efficiency will be presented. Presenter Patrick Walsh
Video

Impact of Supervisory Control on Criteria Tailpipe Emissions for an Extended-Range Electric Vehicle

2012-06-05
The Hybrid Electric Vehicle Team of Virginia Tech participated in the three-year EcoCAR Advanced Vehicle Technology Competition organized by Argonne National Laboratory, and sponsored by General Motors and the U.S. Department of Energy. The team established goals for the design of a plug-in, range-extended hybrid electric vehicle that meets or exceeds the competition requirements for EcoCAR. The challenge involved designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use, regulated tailpipe emissions, and well-to-wheel greenhouse gas emissions. To interface with and control the hybrid powertrain, the team added a Hybrid Vehicle Supervisory Controller, which enacts a torque split control strategy. This paper builds on an earlier paper [1] that evaluated the petroleum energy use, criteria tailpipe emissions, and greenhouse gas emissions of the Virginia Tech EcoCAR vehicle and control strategy from the 2nd year of the competition.
Video

Impact of Technology on Electric Drive Fuel Consumption and Cost

2012-05-25
In support of the U.S Department of Energy's Vehicle Technologies Program, numerous vehicle technology combinations have been simulated using Autonomie. Argonne National Laboratory (Argonne) designed and wrote the Autonomie modeling software to serve as a single tool that could be used to meet the requirements of automotive engineering throughout the development process, from modeling to control, offering the ability to quickly compare the performance and fuel efficiency of numerous powertrain configurations. For this study, a multitude of vehicle technology combinations were simulated for many different vehicles classes and configurations, which included conventional, power split hybrid electric vehicle (HEV), power split plug-in hybrid electric vehicle (PHEV), extended-range EV (E-REV)-capability PHEV, series fuel cell, and battery electric vehicle.
Video

GreenZone Driving for Plug In Hybrid Electric Vehicles

2012-05-29
Plugin Hybrid Electric Vehicles (PHEV) have a large battery which can be used for electric only powertrain operation. The control system in a PHEV must decide how to spend the energy stored in the battery. In this paper, we will present a prototype implementation of a PHEV control system which saves energy for electric operation in pre-defined geographic areas, so called Green Zones. The approach determines where the driver will be going and then compares the route to a database of predefined Green Zones. The control system then reserves enough energy to be able to drive the Green Zone sections in electric only mode. Finally, the powertrain operation is modified once the vehicle enters the Green Zone to ensure engine operation is limited. Data will be presented from a prototype implementation in a Ford Escape PHEV Presenter Johannes Kristinsson
Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Video

Test Results of Plug-In Vehicles According to SAE Standard Testing Practices

2012-03-27
Over the past several years, new recommended practices for testing plug-in vehicles have been developed by SAE standards committees. At first only proprietary or prototype vehicles were available to validate new procedures. However, with the recent availability of Chevy Volt and Nissan Leaf, these test procedures were put to the test in Argonne�s National Laboratory�s dynamometer test facility. Procedures for the Volt were according to the SAE J1711 procedures. The Leaf was tested according to procedures still under development in the SAE J1634 task force. Identified were aspects of the tests that were successful and areas where more development is needed. As described in SAE J2841, the Volt results were analyzed using a �utility factor� to estimate in-use expectations of electric-only miles.
Technical Paper

Emissions Performance of Bi-fuel CNG and Bi-fuel LPG Passenger Cars Using Sequential Multi-point Injection Systems

2001-03-05
2001-01-1195
This paper describes a study into the emissions performance of a passenger car running on natural gas and liquified petroleum gas. The gasoline engine was modified to allow the introduction of the alternative fuels into the engine. The effect of fuel system hardware on emissions was investigated. Modifications were carried out to the gasoline EMS to allow control of the alternative fuel systems. A number of changes were made to the gasoline calibration to allow operation on the alternative fuels. Emissions tests were conducted on commercial grade natural gas and liquid petroleum gas. The results were compared with gasoline emission results of an equivalent vehicle.
Technical Paper

Measurement of Dynamic Parameters of Automotive Exhaust Hangers

2001-04-30
2001-01-1446
Different methodologies to test and analyze the dynamic stiffness (K) and damping (C) properties of several silicone and EPDM rubber automotive exhaust hangers were investigated in this research. One test method utilized a standard MTS hydraulic test machine with a single sine excitation at discrete frequencies and amplitude levels, while a second method utilized an electrodynamic shaker with broadband excitation. Analysis techniques for extracting the equivalent stiffness and damping were developed in the shaker tests using data from time domain, frequency domain, as well as force transmissibility. A comparison of all of the shaker testing methods for repeatability and accuracy was done with the goal of determining the appropriate method that generates the most consistent results over the range of testing. The shaker testing in the frequency domain using a frequency response function model produced good results and the set-up is relatively inexpensive.
Technical Paper

The Effects of Different Input Excitation on the Dynamic Characterization of an Automotive Shock Absorber

2001-04-30
2001-01-1442
This paper deals with the dynamic characterization of an automotive shock absorber, a continuation of an earlier work [1]. The objective of this on-going research is to develop a testing and analysis methodology for obtaining dynamic properties of automotive shock absorbers for use in CAE-NVH low-to-mid frequency chassis models. First, the effects of temperature and nominal length on the stiffness and damping of the shock absorber are studied and their importance in the development of a standard test method discussed. The effects of different types of input excitation on the dynamic properties of the shock absorber are then examined. Stepped sine sweep excitation is currently used in industry to obtain shock absorber parameters along with their frequency and amplitude dependence. Sine-on-sine testing, which involves excitation using two different sine waves has been done in this study to understand the effects of the presence of multiple sine waves on the estimated dynamic properties.
Technical Paper

Flow-Acoustic Coupling in Quarter-Wave Resonators Using Computational Fluid Dynamics

2001-04-30
2001-01-1430
Quarter-wave resonators are commonly used as acoustic silencers in automotive air induction systems. Similar closed side branches can also be formed in the idle air bypass, exhaust gas recirculation, and positive crankcase ventilation systems of engines. The presence of a mean flow across these side branches can lead to an interaction between the mean flow and the acoustic resonances of the side branch. At discrete flow conditions, this coupling between the flow and acoustic fields may produce high amplitude acoustic pressure pulsations. For the quarter-wave resonator, this interaction can turn the silencer into a noise generator, while for systems where a valve is located at the closed end of the side branch the large pressure pulsations can cause the valve to fail. This phenomenon is not limited to automotive applications, and also occurs in natural gas pipelines, aircraft, and numerous other internal and external flows.
Technical Paper

Exhaust Manifold Radiated Noise Prediction Methodology

2001-04-30
2001-01-1433
The spark ignition engine is a prime source of vibration energy. NVH disturbances generated by the engine ultimately reach the customer in the form of objectionable noise or NVH. Exhaust Manifolds are one of the many sources of noise contributors among the engine components. Often, the exhaust manifold is identified as a source of objectionable NVH late in the design and development process. Due to the lack of an upfront NVH analysis tool, a new CAE NVH methodology for evaluating new exhaust manifold designs has been investigated and developed by the Ford Motor Company's V-Engine CAE and Exhaust Manifold Design Sections. This new CAE methodology has been developed to compare the NVH performance of current production exhaust manifolds to new design levels. Mechanical induced radiated shell noise is the predominate cause of objectionable NVH in exhaust manifolds.
Technical Paper

Serpentine Accessory Belt Drive Tool: Virtual Prototyping for V-Ribbed Belt Drives

2001-04-30
2001-01-1424
Serpentine accessory belts are commonly used in industries such as automotive and general machinery. The purpose of this analytical tool is to provide design engineers the capability to model belt drive systems using ADAMS (Automated Dynamic Analysis of Mechanical Systems). The generated ADAMS models can be used to analyze several different characteristics concerning V-Ribbed belt drive systems. The general solution of the governing nonlinear equations provides the coupled longitudinal and transverse response of the translating belt drive system. Typical simulation outputs include pulley hubloads, belt impact dynamic forces, and belt slip rates at the pulleys.
Technical Paper

Nanofluids for Vehicle Thermal Management

2001-05-14
2001-01-1706
Applying nanotechnology to thermal engineering, ANL has addressed the interesting and timely topic of nanofluids. We have developed methods for producing both oxide and metal nanofluids, studied their thermal conductivity, and obtained promising results: (1) Stable suspensions of nanoparticles can be achieved. (2) Nanofluids have significantly higher thermal conductivities than their base liquids. (3) Measured thermal conductivities of nanofluids are much greater than predicted. For these reasons, nanofluids show promise for improving the design and performance of vehicle thermal management systems. However, critical barriers to further development and application of nanofluid technology are agglomeration of nanoparticles and oxidation of metallic nanoparticles. Therefore, methods to prevent particle agglomeration and degradation are required.
Technical Paper

Thermal Management for the HEV Liquid-Cooled Electric Machine

2001-05-14
2001-01-1713
The future of the Hybrid Electric Vehicle (HEV) is very promising for the automotive industry. In order to take a full advantage of this concept, a better thermal performance of the electric motor is required. In this study, Computational Fluid Dynamics (CFD) model was first verified through several prototypes testing and then is going to be used to execute a series of design of experiment via simulation. Based on the thermal studies in this paper, the integrated coolant jacket design has a better performance than that of separated one. The thermal performance of the stator with the 3M coating is better than the one with paper liner. In addition, using 3M coating reduces the packaging size of the stator.
Technical Paper

Effect of Soot Loading on the Thermal Characteristics of Diesel Engine Oils

2001-05-14
2001-01-1714
When compared with new oil, used diesel engine oils exhibited thermal conductivity that increases as the concentration of soot increases. The magnitude of the effect depends on the oil composition, and on the size and dispersion of the soot particles. Although soot in engine oil is generally deleterious to engine performance from the standpoint of wear and deposits, no negative effects were observed on the thermal performance of the oil itself; indeed, even slight positive effects are expected for oils that maintain soot in stable dispersion. Therefore, the thermal challenge for engine oils in diesel engines that use exhaust gas recirculation will be to prevent soot deposition on engine surfaces.
Technical Paper

Effects of Vehicle Windshield Defrosting and Demisting Process on Passenger Comfort

2001-05-15
2001-01-1729
This paper describes an investigation into the fluid flow and heat transfer on the windshield as well the effect of the air discharge from the defroster vents on passenger comfort. The investigation is both experimental and computational. Full-scale tests are conducted on a current vehicle model using non-intrusive diagnostic methods. The results presented are from numerical simulations validated by experimental measurements. The numerical predictions compare well with the experimental measurements. The locations of maximum velocity and pressure, as well as width and length of re-circulation regions, are correctly predicted.
Technical Paper

Numerical Modeling of Engine Noise Radiation through the use of Acoustic Transfer Vectors - A Case Study

2001-04-30
2001-01-1514
This paper presents the numerical modeling of noise radiated by an engine, using the so-called Acoustic Transfer Vectors and Modal Acoustic Transfer Vectors concept. Acoustic Transfer Vectors are input-output relations between the normal structural velocity of the radiating surface and the sound pressure level at a specific field point and can thus be interpreted as an ensemble of Acoustic Transfer Functions from the surface nodes to a single field point or microphone position. The modal counter part establishes the same acoustic transfer expressed in modal coordinates of the radiating structure. The method is used to evaluate the noise radiated during an engine run-up in the frequency domain. The dynamics of the engine is described using a finite element model loaded with a rpm-dependent excitation. The effectiveness of the method in terms of calculation speed, compared with classical boundary element methods, is illustrated.
X