Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Sequence VIB Engine Test for Evaluation of Fuel Efficiency of Engine Oils - Part I. Aging Procedure for Determination of Fuel Efficiency Retention

1998-10-19
982623
Development of the Sequence VIB dynamometer engine test procedure for evaluating the fuel efficiency benefits of engine oils has recently been completed. This test was designed as an improvement over its predecessor, the Sequence VIA test. It evaluates fuel economy using a range of boundary/mixed and hydrodynamic lubrication stages selected to better represent a wider range of engines. In addition to determining “fresh oil” fuel economy, the new test determines fuel efficiency retention after a second oil aging stage that corresponds to 6437 - 9674 km (4,000 - 6,000 miles) of pre-certification aging of engine oils in vehicles and is representative of customer use. This paper describes the selection of aging conditions and length.
Technical Paper

Sequence VIB Engine Test for Evaluation of Fuel Efficiency of Engine Oils - Part II. Stage Selection and Time Factor Determination

1998-10-19
982624
The newly developed Sequence VIB engine dynamometer test for measuring the ability of engine oils to improve engine fuel efficiency was designed as an improvement on its predecessor, the Sequence VIA test. The Sequence VIB test features an additional, extended oil aging to correspond to aging of engine oils in certification vehicles and in customer use, and a new set of boundary/mixed and hydrodynamic lubrication stages to better represent a wider range of engines. Five fuel economy measurement stages were chosen for the Sequence VIB test from a larger set of prototype stages, based on extensive friction modeling of engines, analysis of Sequence VIA data on reference oils, and operational considerations. Time factors for these stages were derived based on a mini-mapping of engines considering engine operating conditions in the Metro/Highway Federal fuel economy test procedure (FTP M/H) and the estimated market volume of each engine-vehicle.
X