Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Effect of Epoxy-Based Structural Foam on Energy Management: An Experimental & Analytical Investigation

2001-03-05
2001-01-0473
The effect of epoxy-based structural foam on strength, stiffness, and energy absorption of foam filled structural components is investigated and implemented to formulate design guide-lines that can be used in enhancing weight reduction and engineering functions of systems. An experimental approach is first utilized to identify design variables such as foam density, gage, and foam layer thickness, that are needed to enhance the weight/ performance ratio of structural hat-section components. A CAE approach using non-linear, large deformation finite element analysis is used to model the hat-section components. An acceptance level of confidence in the CAE analytical tools is then established based on comparisons of results between the two approaches. Upon that, the CAE analytical tools are deployed in a sensitivity study to quantify the crush/crash characteristics of foam-filled hat-section components with respect to the changes in the afore mentioned design variables.
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference

2006-11-06
2006-22-0017
Numerical analyses frequently accompany experimental investigations that study injury biomechanics and improvements in automotive safety. Limited by computational speed, earlier mathematical models tended to simplify the system under study so that a set of differential equations could be written and solved. Advances in computing technology and analysis software have enabled the development of many sophisticated models that have the potential to provide a more comprehensive understanding of human impact response, injury mechanisms, and tolerance. In this article, 50 years of publications on numerical modeling published in the Stapp Car Crash Conference Proceedings and Journal were reviewed. These models were based on: (a) author-developed equations and software, (b) public and commercially available programs to solve rigid body dynamic models (such as MVMA2D, CAL3D or ATB, and MADYMO), and (c) finite element models.
Technical Paper

A Dynamic Component Rollover Crash Test System

2006-04-03
2006-01-0721
Full vehicle dynamic crash tests are commonly used in the development of rollover detection sensors, algorithms and occupant protection systems. However, many published studies have utilized component level rollover test fixtures for rollover related occupant kinematics studies and restraint system evaluation and development. A majority of these fixtures attempted to replicate only the rotational motion that occurs during the free flight phase of a typical full vehicle rollover crash test. In this paper, a description of the methods used to design a new dynamic component rollover test device is presented. A brief summary of several existing rollover component test methods is included. The new system described in this paper is capable of replicating the transfer of lateral energy into rotational vehicle motion that is present in many tripped laboratory based rollover crash tests.
Technical Paper

Image Analysis of Rollover Crash Tests Using Photogrammetry

2006-04-03
2006-01-0723
This paper presents an image analysis of a laboratory-based rollover crash test using camera-matching photogrammetry. The procedures pertaining to setup, analysis and data process used in this method are outlined. Vehicle roll angle and rate calculated using the method are presented and compared to the measured values obtained using a vehicle mounted angular rate sensor. Areas for improvement, accuracy determination, and vehicle kinematics analysis are discussed. This paper concludes that the photogrammetric method presented is a useful tool to extract vehicle roll angle data from test video. However, development of a robust post-processing tool for general application to crash safety analysis requires further exploration.
Technical Paper

A Study of Kinematics of Occupants Restrained with Seat Belt Systems in Component Rollover Tests

2007-04-16
2007-01-0709
An experimental study was conducted using a dynamic rollover component test system (ROCS) to study the effects of activating a pyro-mechanical buckle pre-tensioner and an electric retractor on the driver and front right passenger head and pelvis excursions. The ROCS is a unique system capable of producing vehicle responses that replicate four distinct phases of a tripped rollover: trip initiation, roll initiation, free-flight vehicle rotation, and vehicle to ground contact. This component test system consists of a rigid occupant compartment derived from a mid-size SUV with complete 1st row seating and interior trim, a simulated vehicle suspension system and an elastic vehicle-to-ground-contact surface. The ROCS system was integrated with a Deceleration Rollover Sled (DRS). Dynamic responses of the ROCS system, including both the rigid compartment and occupant, were measured and recorded.
Technical Paper

Assessment Tool Development for Rollover CAE Signals Evaluation

2007-04-16
2007-01-0681
An assessment tool was developed for rollover CAE signals evaluation to assess primarily the qualities of CAE generated sensor waveforms. This is a key tool to be used to assess CAE results as to whether they can be used for algorithm calibration and identify areas for further improvement of sensor. Currently, the method is developed using error estimates on mean, peak and standard deviation. More metrics, if necessary, can be added to the assessment tool in the future. This method has been applied to various simulated signals for laboratory-based rollover test modes with rigid-body-based MADYDO models.
Technical Paper

Vehicle Rollover Sensor Test Modeling

2007-04-16
2007-01-0686
A computational model of a mid-size sport utility vehicle was developed using MADYMO. The model includes a detailed description of the suspension system and tire characteristics that incorporated the Delft-Tyre magic formula description. The model was correlated by simulating a vehicle suspension kinematics and compliance test. The correlated model was then used to simulate a J-turn vehicle dynamics test maneuver, a roll and non-roll ditch test, corkscrew ramp and a lateral trip test, the results of which are presented in this paper. The results indicate that MADYMO is able to reasonably predict the vehicle and occupant responses in these types of applications and is potentially suited as a tool to help setup a suite of vehicle configurations and test conditions for rollover sensor testing. A suspension system sensitivity study is presented for the laterally tripped non-roll event.
Technical Paper

Selection of Vehicle Prototypes for Rollover Sensor Calibration Tests using CAE-DOE

2002-07-09
2002-01-2057
CAE has played a key role in development of the rollover safety technology by reducing the required number of prototypes. CAE-led Design Of Experiments (DOE) studies have helped in developing the process to minimize the number of CAE runs and to optimize use of the prototypes. This paper demonstrates the use of CAE/DOE for the design and optimization of rollover vehicle prototypes and also investigates effects of various factors in the selection of vehicle configuration for rollover sensor calibration testing. The process described herein has been successfully applied to vehicle programs. Modeling and analysis guidelines are also presented for CAE engineers to help in optimizing vehicle prototypes at program level.
Technical Paper

Use of Photogrammetry in Extracting 3D Structural Deformation/Dummy Occupant Movement Time History During Vehicle Crashes

2005-04-11
2005-01-0740
The ability to extract and evaluate the time history of structural deformations or crush during vehicle crashes represents a significant challenge to automotive safety researchers. Current methods are limited by the use of electro-mechanical devices such as string pots and/or linear variable displacement transducers (LVDT). Typically, one end of the transducer must be mounted to a point on the structure that will remain un-deformed during the event; the other end is then attached to the point on the structure where the deformation is to be measured. This approach measures the change in distance between these two points and is unable to resolve any movement into its respective X, Y, or Z directions. Also, the accuracy of electro-mechanical transducers is limited by their dynamic response to crash conditions. The photogrammetry technique has been used successfully in a wide variety of applications including aerial surveying, civil engineering and documentation of traffic accidents.
Technical Paper

Structural Response of Lower Leg Muscles in Compression: A Low Impact Energy Study Employing Volunteers, Cadavers and the Hybrid III

2002-11-11
2002-22-0012
Little has been reported in the literature on the compressive properties of muscle. These data are needed for the development of finite element models that address impact of the muscles, especially in the study of pedestrian impact. Tests were conducted to characterize the compressive response of muscle. Volunteers, cadaveric specimens and a Hybrid III dummy were impacted in the posterior and lateral aspect of the lower leg using a free flying pendulum. Volunteer muscles were tested while tensed and relaxed. The effects of muscle tension were found to influence results, especially in posterior leg impacts. Cadaveric response was found to be similar to that of the relaxed volunteer. The resulting data can be used to identify a material law using an inverse method.
Technical Paper

Testing of Cooling Module Component for Frontal Impact and Sensor Modeling Development

2003-03-03
2003-01-0501
This paper describes (1) the development of a component test methodology for testing a cooling module including radiator, condenser and trans. cooler, and (2) the associated CAE model development. A series of light truck/SUV cooling module component tests were conducted to obtain their characteristics as inputs for frontal impact and sensor modeling development. First, the cooling module component CAE sub-model was developed using soft springs along with fine-mesh sheet metal shell elements. Second, simulated sub-model results were correlated fairly well with the test data. Third, this component CAE sub-model was then incorporated into a full vehicle CAE model that was used for frontal impact (NCAP) and sensor development. Results indicated that the proposed test method for cooling module components provided consistent data and the results from cooling module sub-model can be incorporated into the full vehicle CAE model for improving the quality and accuracy of CAE models.
Technical Paper

Development of CAE-Based Crash Sensing Algorithm and System Calibration

2003-03-03
2003-01-0509
State of the art electronic restraint systems rely on the acceleration measured during a vehicle crash for deployment decisions. The acceleration signal is analyzed with different criteria, among which the velocity change is a dominant criterion in almost any existing crash detection algorithm. Sensors in the front crush zone have recently been added to help develop restraint systems that comply with the new FMVSS208 and EuroNCAP regulations. Front crash sensors are usually evaluated for their velocity change during a crash and typically play a key role in the deployment decision. CAE based FEA analysis has recently been used to generate signals at the sensor module locations in crash simulations to provide supplemental information for crash sensing algorithm development and calibration. This paper presents an initial effort in developing a velocity-based crash detection algorithm, that allows broad use of CAE generated velocity time histories for system calibration.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs – Part II: SID-IIs

2018-04-03
2018-01-1448
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Influence of System Variables on Interior Head Impact Testing

1995-02-01
950882
Head Impact Criterion (HIC) numbers obtained from interior head impact testing with the NHTSA-designed Free Motion Headform (FMH) are influenced by many variables. The high level of variability experienced in the NHTSA-proposed Interior Head Impact Test presents a challenge to today's automotive engineers. Primary contributors to HIC variability include (1) impact speed, (2) headform calibration performance, (3) design/build part variation, and (4) target point impact accuracy. This study shows that controlling these variables during testing can improve test data repeatability and reproducibility, as well as reduce design and testing time.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
X