Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Role of the Body Mount on the Passenger Compartment Response of a Frame/Body Structured Vehicle in Frontal Crash

1998-02-23
980861
A comprehensive strategy to investigate the role of the body mounts on the passenger compartment response in a frontal crash event is presented. The activities of the study include quasi-static vehicle crush testing, development of a component-level dynamic body mount test methodology, lumped-mass computer modeling, as well as technical analysis. In addition, a means of investigating the effects the body mounts have on the passenger compartment response during a frontal barrier impact is addressed.
Technical Paper

Implicit and Explicit Finite Element Methods for Crash Safety Analysis

2007-04-16
2007-01-0982
Explicit method is commonly used in crashworthiness analysis due to its capability to solve highly non-linear problems without numerous iterations and convergence problems. However, the time step for explicit methods is limited by the time that the physical wave crosses the element. Therefore, to avoid large amount of CPU time, the explicit method is usually used for non-linear dynamic problems with a short period of simulation duration. For problems under quasi-static loading conditions at pre-crash and post-crash, implicit method could be more efficient than explicit methods because the required computation time is much shorter. Due to the recent advance of crash codes, which allows both implicit and explicit computations to be performed in the same code, crash engineers are able to use explicit computation for crash simulation as well as implicit computation for some of the pre-crash quasi-static loading or post-crash spring back simulations.
Technical Paper

Approaches to Modeling the Dynamic Interaction for an Automotive Seat and Occupant System

2007-04-16
2007-01-0988
There are a wide variety of approaches to model the automotive seat and occupant interaction. This paper traces the studies conducted for simulating the occupant to seat interaction in frontal and/or rear crash events. Starting with an initial MADYMO model, a MADYMO-LS/DYNA coupled model was developed. Subsequently, a full Finite Element Analysis model using LS/DYNA was studied. The main objective of the studies was to improve the accuracy and efficiency of CAE models for predicting the dummy kinematics and structural deformations at the restraint attachment locations in laboratory tests. The occupant and seat interaction was identified as one of the important factors that needed to be accurately simulated. Quasi-static and dynamic component tests were conducted to obtain the foam properties that were input into the model. Foam specimens and the test setup are discussed. Different material models in LS/DYNA were evaluated for simulating automotive seat foam.
Technical Paper

Analysis of Neck Tension Force in IIHS Rear Impact Test

2007-04-16
2007-01-0368
This paper examines the neck tension force (Fz) of the BioRid II dummy in the IIHS (Insurance Institute of Highway Safety) rear impact mode. The kinematics of the event is carefully reviewed, followed by a detailed theoretical analysis, paying particular attention to the upper neck tension force. The study reveals that the neck tension should be approximately 450N due to the head inertia force alone. However, some of the tests conducted by IIHS had neck tension forces as high as 1400N. The theory of head hooking and torso downward pulling is postulated in the paper, and various publicly available IIHS rear impact tests are examined against the theory. It is found in the analysis that in many of those tests with high neck tension forces, the locus of the head restraint reaction force travels on the dummy's skull cap, and eventually moves down underneath the skull cap, which causes “hooking” of the head on the stacked-up head restraint foam.
Technical Paper

Finite Element Modeling of the Frame for Body on Frame Vehicles, Part 1 - Subsystem Investigation

2004-03-08
2004-01-0688
For a body-on-frame (BOF) vehicle, the frame is the major structural subsystem to absorb the impact energy in a frontal vehicle impact. It is also a major contributor to energy absorption in rear impact events as well. Thus, the accuracy of the finite element frame model has significant influence on the quality of the BOF vehicle impact predictability. This study presents the latest development of the frame modeling methodology on the simulation of BOF vehicle impact performance. The development is divided into subsystem (frame sled test) and full system (full vehicle test). This paper presents the first phase, subsystem testing and modeling, of the frame modeling development. Based on the major deformation modes in frontal impact, the frame is cut into several sections and put on the sled to conduct various tests. The success of the sled test highly depends on whether the sled results can replicate the deformation modes in the full vehicle.
Technical Paper

Finite Element Modeling of the Frame for Body-On-Frame Vehicles: Part II - Full Vehicle Crash

2004-03-08
2004-01-0689
This study focuses on the modeling of a frame in a body-on-frame (BOF) vehicle to improve the prediction of vehicle response in crashes. The study is divided into three phases - component (frame material modeling), subsystem (frame sled test) and full system (full vehicle test). In the component level, we investigate the available strain rate data, the performance of various material models in crash codes and the effect of the strain rate in crash simulation. In the subsystem phase, we incorporate the strain rate modeling and expand the scope to include both the forming and the welding effects in the subsystem CAE model to improve the correlation between CAE and test. Finally the improved frame modeling methodology with strain rate, forming and welding effects is adopted in full vehicle model. It is found that the proposed frame modeling methodology is crucial to improve the pulse prediction of a full vehicle in crashes.
Technical Paper

Testing and Modeling of Mounts for Improved Safety Design and Crashworthiness Analysis

2005-04-11
2005-01-0749
This paper describes (1) the findings from the implementation of a component test methodology for body, engine and transmission mounts [1, 2 and 3], and (2) the associated CAE model development and mount design robustness enhancement. A series of component tests on light truck body, engine and transmission mounts have been conducted to not only obtain their characteristics as inputs for crashworthiness analysis, but also drive mount design direction for frontal impacts.
Technical Paper

Testing of Cooling Module Component for Frontal Impact and Sensor Modeling Development

2003-03-03
2003-01-0501
This paper describes (1) the development of a component test methodology for testing a cooling module including radiator, condenser and trans. cooler, and (2) the associated CAE model development. A series of light truck/SUV cooling module component tests were conducted to obtain their characteristics as inputs for frontal impact and sensor modeling development. First, the cooling module component CAE sub-model was developed using soft springs along with fine-mesh sheet metal shell elements. Second, simulated sub-model results were correlated fairly well with the test data. Third, this component CAE sub-model was then incorporated into a full vehicle CAE model that was used for frontal impact (NCAP) and sensor development. Results indicated that the proposed test method for cooling module components provided consistent data and the results from cooling module sub-model can be incorporated into the full vehicle CAE model for improving the quality and accuracy of CAE models.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs – Part II: SID-IIs

2018-04-03
2018-01-1448
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Modeling and Design for Vehicle Pitch and Drop of Body-on-Frame Vehicles

2005-04-11
2005-01-0356
Vehicle pitch and drop play an important role for occupant neck and head injury at frontal impact. The excessive vehicle header drop, due to vehicle pitch and drop during crash, induces aggressive interaction between occupant head and sun visor/header that causes serious head and neck injuries. For most of body-on-frame vehicles, vehicle pitch and drop have commonly been observed at frontal impact tests. It is because the vehicle body is pulled downward by frame rails, which bend down during crash. Hence, the challenges of frame design are not only to absorb crash energy but also to manage frame deformation for minimizing vehicle pitch and drop. In this paper, the finite element method is used to analyze frame deformation at full frontal impact. To ensure the quality of CAE model, a full vehicle FEA model is correlated to barrier tests. In addition, a study of CAE modeling affecting vehicle header drop is performed.
Technical Paper

Important Modeling Practices in CAE Simulation for Vehicle Pitch and Drop

2006-04-03
2006-01-0124
Vehicle pitch and drop has become an important subject to crash analysis due to the recent FMVSS208 requirements for unbelted occupant. During frontal impact, the excessive header drop due to significant vehicle pitch and drop can induce the contact between occupant's head and sun visor. To avoid this issue, structure design for reducing vehicle pitch and drop is essential to crash safety. Historically, CAE simulation has been used in structure design during vehicle development process. Therefore, the quality of CAE modeling for replicating vehicle pitch and drop at physical test is crucial for assisting the structure design. In this paper, the most effective components in CAE model to vehicle pitch and drop have been identified and ranked by using the results of the sensitivity study. Hence the model quality can be emphasized on those major components including front horn, kick-down of front frame, body structure at upper load path, and body mounts.
Technical Paper

MMLV: Crash Safety Performance

2015-04-14
2015-01-1614
The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy (DOE) project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while achieving frontal crash test performance comparable to the baseline vehicle. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364 kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0 liter three-cylinder engine, leading to the potential for reduced environmental impact and improved fuel economy.
X