Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Strain-Rate Characterization of Automotive Steel and the Effect of Strain-Rate in Component Crush Analysis

1998-09-29
982392
The effects of strain-rate and element mesh size on the numerical simulation of an automotive component impacted by a mass dropped from an instrumented drop tower was investigated. For this study, an analysis of a simple steel rail hat-section impacted by a mass moving at an initial velocity of 28Mph was performed using the explicit finite element code Radioss. Three constitutive material models: Elasto-Plastic (without strain rate), Johnson-Cook, and Zerilli-Armstrong were used to characterize the material properties for mild and high strength steel. Results obtained from the numerical analyses were compared to the experimental data for the maximum crush, final deformation shape, average crush force and the force-deflection curve. The results from this study indicate that the mechanical response of steel can be captured utilizing a constitutive material model which accounts for strain rate effect coupled with an average mesh size of 6 to 9mm.
Technical Paper

Adhesive Modeling in Crash Simulation

2006-04-03
2006-01-0955
A practical modeling methodology for adhesively bonded structures using discrete springs has been developed for crash simulation. As a first step, a series of coupon tests with adhesively bonded substrates have been conducted under tension, peel and shearing. Both deformable and rigid substrates have been used in these tests. The resulting data has been used to determine the properties of the adhesive springs. A set of numerical simulations of the coupon tests have been conducted to verify that the adhesive spring properties derived earlier do indeed represent the mechanical properties of the physical adhesives in the coupon tests.
X