Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Technical Paper

Characterization and Modeling of Wet Clutch Actuator for High-Fidelity Propulsion System Simulations

2020-04-14
2020-01-1414
Innovations in mobility are built upon a management of complex interactions between sub-systems and components. A need for CAE tools that are capable of system simulations is well recognized, as evidenced by a growing number of commercial packages. However impressive they are, the predictability of such simulations still rests on the representation of the base components. Among them, a wet clutch actuator continues to play a critical role in the next generation propulsion systems. It converts hydraulic pressure to mechanical force to control torque transmitted through a clutch pack. The actuator is typically modeled as a hydraulic piston opposed by a mechanical spring. Because the piston slides over a seal, some models have a framework to account for seal friction. However, there are few contributions to the literature that describe the effects of seals on clutch actuator behaviors.
Technical Paper

Numerical Investigation of Friction Material Contact Mechanics in Automotive Clutches

2020-04-14
2020-01-1417
A wet clutch model is required in automotive propulsion system simulations for enabling robust design and control development. It commonly assumes Coulomb friction for simplicity, even though it does not represent the physics of hydrodynamic torque transfer. In practice, the Coulomb friction coefficient is treated as a tuning parameter in simulations to match vehicle data for targeted conditions. The simulations tend to deviate from actual behaviors for different drive conditions unless the friction coefficient is adjusted repeatedly. Alternatively, a complex hydrodynamic model, coupled with a surface contact model, is utilized to enhance the fidelity of system simulations for broader conditions. The theory of elastic asperity deformation is conventionally employed to model clutch surface contact. However, recent examination of friction material shows that the elastic modulus of surface fibers significantly exceeds the contact load, implying no deformation of fibers.
Journal Article

Launch Performance Optimization of GTDI-DCT Powertrain

2015-04-14
2015-01-1111
A direct trajectory optimization approach is developed to assess the capability of a GTDI-DCT Powertrain, with a Gasoline Turbocharged Direct Injection (GTDI) engine and Dual Clutch Transmission (DCT), to satisfy stringent drivability requirements during launch. The optimization is performed directly on a high fidelity black box powertrain model for which a single simulation of a launch event takes about 8 minutes. To address this challenging problem, an efficient parameterization of the control trajectory using Gaussian kernel functions and a Mesh Adaptive Direct Search optimizer are exploited. The results and observations are reported for the case of clutch torque optimization for launch at normal conditions, at high altitude conditions and at non-zero grade conditions. The results and observations are also presented for the case of simultaneous optimization of multiple actuator trajectories at normal conditions.
Journal Article

Fuel Economy Potential of Variable Compression Ratio for Light Duty Vehicles

2017-03-28
2017-01-0639
Increasing compression ratio (CR) is one of the most fundamental ways to improve engine efficiency, but the CR of practical spark ignition engines is limited by knock and spark retard at high loads. A variable CR mechanism could improve efficiency by using higher CR at low loads, and lower CR (with less spark retard) at high loads. This paper quantifies the potential efficiency benefits of applying variable CR to a modern downsized, boosted gasoline engine. Load sweeps were conducted experimentally on a multi-cylinder gasoline turbocharged direct injection (GTDI) engine at several CRs. Experimental results were compared to efficiency versus CR correlations from the literature and were used to estimate the fuel economy benefits of 2-step and continuously variable CR concepts on several engine/vehicle combinations, for various drive cycles.
Journal Article

Two-Phase MRF Model for Wet Clutch Drag Simulation

2017-03-28
2017-01-1127
Wet clutch packs are widely used in today’s automatic transmission systems for gear-ratio shifting. The frictional interfaces between the clutch plates are continuously lubricated with transmission fluid for both thermal and friction management. The open clutch packs shear transmission fluid across the rotating plates, contributing to measurable energy losses. A typical multi-speed transmission includes as many as 5 clutch packs. Of those, two to three clutches are open at any time during a typical drive cycle, presenting an opportunity for fuel economy gain. However, reducing open clutch drag is very challenging, while meeting cooling requirements and shift quality targets. In practice, clutch design adjustment is performed through trial-and-error evaluation of hardware on a test bench. The use of analytical methodologies is limited for optimizing clutch design features due to the complexity of fluid-structure interactions under rotating conditions.
Journal Article

In-Vehicle Characterization of Wet Clutch Engagement Behaviors in Automatic Transmission Systems

2018-04-03
2018-01-0395
A new generation of a planetary-gear-based automatic transmission system is designed with an increasing number of ratio steps. It requires synchronous operation of one or more wet clutches, to achieve a complex shift event. A missed synchronization results in drive torque disturbance which may be perceived by vehicle occupants as an undesirable shift shock. Accurate knowledge of clutch behaviors in an actual vehicle environment is indispensable for achieving precise clutch controls and reducing shift calibration effort. Wet clutches are routinely evaluated on an industry-standard SAE#2 tester during the clutch design process. While it is a valuable tool for screening relative frictional behaviors, clutch engagement data from a SAE#2 tester do not correlate well with vehicle shift behaviors due to the limited reproducibility of realistic slip, actuator force profiles, and lubrication conditions.
Journal Article

Analytic Model of Powertrain Drive Cycle Efficiency, with Application to the US New Vehicle Fleet

2016-04-05
2016-01-0902
An analytic model of powertrain efficiency on a drive cycle was developed and evaluated using hundreds of cars and trucks from the US EPA ‘Test Car Lists’. The efficiency properties of naturally aspirated and downsized turbocharged engines were compared for vehicles with automatic transmissions on the US cycles. The resulting powertrain cycle efficiency model is proportional to the powertrain marginal energy conversion efficiency K, which is also its upper limit. It decreases as the powertrain matching parameters, the displacement-to-mass ratio (D/M) and the gearing ratio (n/V), increase. The inputs are the powertrain fuel consumption, the vehicle road load, and the cycle work requirement. They could be modeled simply with only minor approximations through the use of absolute inputs and outputs, and systematic use of scaling. On the Highway test, conventional automatic transmission vehicles of moderate performance achieve between 25% and 30% powertrain efficiency.
Journal Article

Enhanced Heat Transfer Coefficient (HTC) Method to Model Air Quench Process: HTC Patching for More Accurate FEA Temperature Calculation

2016-04-05
2016-01-1383
Air quenching is a common manufacturing process in automotive industry to produce high strength metal component by cooling heated parts rapidly in a short period of time. With the advancement of finite element analysis (FEA) methods, it has been possible to predict thermal residual stress by computer simulation. Previous research has shown that heat transfer coefficient (HTC) for steady air quenching process is time and temperature independent but strongly flow and geometry dependent. These findings lead to the development of enhanced HTC method by performing CFD simulation and extracting HTC information from flow field. The HTC obtained in this fashion is a continuous function over the entire surface. In current part of the research, two patching algorithms are developed to divide entire surface into patches according to HTC profile and each patch is assigned a discrete HTC value.
Journal Article

Using Bluetooth Low Energy for Dynamic Information-Sharing in Vehicle-to-Vehicle Communication

2017-03-28
2017-01-1650
Bluetooth Low Energy (BLE) is an energy-efficient radio communication technology that is rapidly gaining popularity for various Internet of Things (IoT) applications. While BLE was not designed specifically with vehicular communications in mind, its simple and quick connection establishment mechanisms make BLE a potential inter-vehicle communication technology, either replacing or complementing other vehicle-to-vehicle (V2V) technologies (such as the yet to be deployed DSRC). In this paper we propose a framework for V2V communication using BLE and evaluate its performance under various configurations. BLE uses two major methods for data transmission: (1) undirected advertisements and scanning (unconnected mode) and (2) using the central and peripheral modes of the Generic Attribute Profile (GATT) connection (connected mode).
Journal Article

Multibody Dynamics Cosimulation for Vehicle NVH Response Predictions

2017-03-28
2017-01-1054
At various milestones during a vehicle’s development program, different CAE models are created to assess NVH error states of concern. Moreover, these CAE models may be developed in different commercial CAE software packages, each one with its own unique advantages and strengths. Fortunately, due to the wide spread acceptance that the Functional Mock-up Interface (FMI) standard gained in the CAE community over the past few years, many commercial CAE software now support cosimulation in one form or the other. Cosimulation allows performing multi-domain/multi-resolution simulations of the vehicle, thereby combining the advantages of various modeling techniques and software. In this paper, we explore cosimulation of full 3D vehicle model developed in MSC ADAMS with 1D driveline model developed in LMS AMESim. The target application of this work is investigation of vehicle NVH error states associated with both hybridized and non-hybridized powertrains.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

An Analysis of the Effects of Ventilation on Burn Patterns Resulting from Passenger Compartment Interior Fires

2020-04-14
2020-01-0923
Vehicle fire investigators often use the existence of burn patterns, along with the amount and location of fire damage, to determine the fire origin and its cause. The purpose of this paper is to study the effects of ventilation location on the interior burn patterns and burn damage of passenger compartment fires. Four similar Ford Fusion vehicles were burned. The fire origin and first material ignited were the same for all four vehicles. In each test, a different door window was down for the duration of the burn test. Each vehicle was allowed to burn until the windshield, back glass, or another window, other than the window used for ventilation, failed, thus changing the ventilation pattern. At that point, the fire was extinguished. Temperatures were measured at various locations in the passenger compartment. Video recordings and still photography were collected at all phases of the study.
Technical Paper

Mathematical Analysis of Clutch Thermal Energy during Automatic Shifting Coupled with Input Torque Truncation

2020-04-14
2020-01-0967
A step-ratio automatic transmission alters torque paths for gearshifting through engagement and disengagement of clutches. It enables torque sources to run efficiently while meeting driver demand. Yet, clutch thermal energy during gearshifting is one of the contributors to the overall fuel loss. In order to optimize drivetrain control strategy, including the frequency of shifts, it is important to understand the cost of shift itself. In a power-on upshift, clutch thermal energy is primarily dissipated during inertia phase. The interaction between multiple clutches, coupled with input torque truncation, makes the decomposition of overall energy loss less obvious. This paper systematically presents the mathematical analysis of clutch thermal energy during the inertia phase of a typical single-transition gearshift. In practice, a quicker shift is generally favored, partly because the amount of energy loss is considered smaller.
Journal Article

Design Considerations for Hydrogen Management System on Ford Hydrogen Fueled E-450 Shuttle Bus

2009-04-20
2009-01-1422
As part of a continuous research and innovation effort, Ford Motor Company has been evaluating hydrogen as an alternative fuel option for vehicles with internal combustion engines since 1997. Ford has recently designed and built an Econoline (E-450) shuttle bus with a 6.8L Triton engine that uses gaseous hydrogen fuel. Safe practices in the production, storage, distribution, and use of hydrogen are essential for the widespread public and commercial acceptance of hydrogen vehicles. Hazards and risks inherent in the application of hydrogen fuel to internal combustion engine vehicles are explained. The development of a Hydrogen Management System (H2MS) to detect hydrogen leaks in the vehicle is discussed, including the evolution of the H2MS design from exploration and quantification of risks, to implementation and validation of a working system on a vehicle. System elements for detection, mitigation, and warning are examined.
Journal Article

Development of Magneto-Elastic Torque Sensor for Automatic Transmission Applications

2013-04-08
2013-01-0301
Progress in the design and application of the magneto-elastic torque sensor to automotive drivetrain systems has taken the technology from the concept level to the point where it is considered production feasible. The latest generation of the sensors shows promising results regarding both the capabilities and applications to powertrain controls. Sensor designs, electronics and packaging layout are maturing. Well-defined component specifications and requirements are becoming available. The sensor utilities for real-time shift analysis and friction element control are established through vehicle-level investigation to demonstrate the production feasibility of the technology for transmission torque sensing.
Technical Paper

Principal Component Analysis of System Usability Scale for Its Application in Automotive In-Vehicle Information System Development

2020-04-14
2020-01-1200
The System Usability Scale (SUS) is used across industries, to evaluate a product’s ease of use. As the automotive industry increases its digital footprint, the SUS has found its application as a simple and reliable assessment of various in-vehicle human machine interfaces. These evaluations cover a broad scope and it is important to design studies with participant fatigue, study time, and study cost in mind. Reducing the number of items in the SUS questionnaire could save researchers time and resources. The SUS is a ten-item questionnaire that can measure usability and learnability, depending on the system. These ten questions are highly correlated to each other suggesting the SUS score can be determined with fewer items. Thus, the focus of this paper is two-fold: using principal component analysis (PCA) to determine the dimensionality of SUS and using this finding to reduce variables and build a regression equation for SUS scores for in-vehicle human machine interfaces.
Technical Paper

Full Body Car Analysis in the Time and Frequency Domains - Sheet, Spot and Seam Weld Fatigue Benchmark Studies

2020-04-14
2020-01-0195
The fatigue analysis of a full car body requires the sheet metal (sheet fatigue), spot welds (spot weld fatigue) and seam welds (seam weld fatigue) to be thoroughly evaluated for durability. Traditionally this has always been done in the time domain, but recently new frequency domain techniques are able to perform these tasks with numerous advantages. This paper will summarize the frequency domain process and then compare the results and performance against the more usual time domain process.
Journal Article

Powertrain Efficiency in the US Fleet on Regulatory Drive Cycles and with Advanced Technologies

2017-03-28
2017-01-0895
The drive cycle average powertrain efficiency of current US vehicles is studied by applying a first principles model to the EPA Test Car List database. The largest group of vehicles has naturally aspirated engines and six speed planetary automatic transmissions, and defines the base technology level. For this group the best cycle average powertrain efficiency is independent of vehicle size and is achieved by the lowest power-to-weight vehicles. For all segments of the EPA test, the fuel required per unit of vehicle work (the inverse of powertrain efficiency), is found to increase linearly with a basic powertrain matching parameter. The parameter is (D/M)(n/V), where D is engine displacement, M vehicle mass, and (n/V) the top gear engine speed over the vehicle speed. The fuel consumption penalties in the City segments due to powertrain warm-up, aftertreatment warm-up, stop-and-go operation, and power-off operation are estimated.
Journal Article

Characterization of Powertrain Technology Benefits Using Normalized Engine and Vehicle Fuel Consumption Data

2018-04-03
2018-01-0318
Vehicle certification data are used to study the effectiveness of the major powertrain technologies used by car manufacturers to reduce fuel consumption. Methods for differentiating vehicles effectively were developed by leveraging theoretical models of engine and vehicle fuel consumption. One approach normalizes by displacement per unit distance, which puts both fuel used and vehicle work in mean effective pressure units, and is useful when comparing engine technologies. The other normalizes by engine rated power, a customer-relevant output metric. The normalized work/power is proportional to weight/power, the most fundamental performance metric. Certification data for 2016 and 2017 U.S. vehicles with different powertrain technologies are compared to baseline vehicles with port fuel injection (PFI) naturally aspirated engines and six-speed automatic transmissions.
X