Refine Your Search



Search Results

Technical Paper

Effects of Fuel Injection Pressure in an Optically-Accessed DISI Engine with Side-Mounted Fuel Injector

This paper presents the results of an experimental study into the effects of fuel injection pressure on mixture formation within an optically accessed direct-injection spark-ignition (DISI) engine. Comparison is made between the spray characteristics and in-cylinder fuel distributions due to supply rail pressures of 50 bar and 100 bar subject to part-warm, part-load homogeneous charge operating conditions. A constant fuel mass, corresponding to stoichiometric tune, was maintained for both supply pressures. The injected sprays and their subsequent liquid-phase fuel distributions were visualized using the 2-D laser Mie-scattering technique. The experimental injector (nominally a hollow-cone pressure-swirl design) was seen to produce a dense filled spray structure for both injection pressures under investigation. In both cases, the leading edge velocities of the main spray suggest the direct impingement of liquid fuel on the cylinder walls.
Technical Paper

Fiber Optic Sensor for Crank Angle Resolved Measurements of Burned Gas Residual Fraction in the Cylinder of an SI Engine

A fiber optic infrared spectroscopic sensor was developed to measure the crank angle resolved residual fraction of burned gas retained in the cylinder of a four-stroke SI engine. The sensor detected the attenuation of infrared radiation in the 4.3 μm infrared vibrational-rotational absorption band of CO2. The residual fraction remaining in the cylinder is proportional to the CO2 concentration. The sensor was tested in a single-cylinder CFR spark ignition engine fired on propane at a speed of 700 rpm. The sensor was located in one of two spark plug holes of the CFR engine. A pressure-transducer-type spark plug was used to record the cylinder pressure and initiate the spark. The temporal resolution of the measurements was 540 μs (equivalent to 2.3 crank angle degrees) and the spatial resolution was 6 mm. Measurements were made during the intake and compression stroke for several intake manifold pressures. The compression ratio of the engine was varied from 6.3 to 9.5.
Technical Paper

Flame Temperature Correlation of Emissions from Diesels Operated on Alternative Fuels

Work by Plee, Ahmad, and coworkers in the 1980s [1, 2, 3, 4 and 5] showed that for changes in intake air state, Diesel NOx, soot, soluble organic fraction, and HC emissions could be correlated using the stoichiometric flame temperature calculated at SOC or peak pressure conditions. In the present work, similar flame temperature correlations are obtained for emissions from three test engines; a 1.2L high speed direct injection (HSDI) Diesel, a 2.4L HSDI Diesel, and a 2.34 L single cylinder direct injection (DI) Diesel engine, the first of which was tested using four alternative fuels. Use of the flame temperature correlations presented may reduce the number of engine tests required to evaluate the effects of EGR on emissions of NOx, particulate, and HC, even when alternative fuels are used.
Technical Paper

Modeling of HCCI Combustion and Emissions Using Detailed Chemistry

To help guide the design of homogeneous charge compression ignition (HCCI) engines, single and multi-zone models of the concept are developed by coupling the first law of thermodynamics with detailed chemistry of hydrocarbon fuel oxidation and NOx formation. These models are used in parametric studies to determine the effect of heat loss, crevice volume, temperature stratification, fuel-air equivalence ratio, engine speed, and boosting on HCCI engine operation. In the single-zone model, the cylinder is assumed to be adiabatic and its contents homogeneous. Start of combustion and bottom dead center temperatures required for ignition to occur at top dead center are reported for methane, n-heptane, isooctane, and a mixture of 87% isooctane and 13% n-heptane by volume (simulated gasoline) for a variety of operating conditions.
Technical Paper

Powerplant Block-Crank Dynamic Interaction and Radiated Noise Prediction

This paper discusses flexible, multi-body, coupled dynamic simulation of a crankshaft system acting upon a power plant structure that includes an engine block, cylinder heads, oil pan, crank train (i.e., crankshaft, connecting rods, bearings etc.) and transmission. The simulation is conducted using AVL/EXCITE [1]. Engine loads are first predicted, and then used to compute radiated noise from the engine assembly. Radiated noise level is computed by sweeping the excitation frequency through a range associated with the normal operating RPM of the engine. The results of the radiated noise computation are plotted on a “3D” Campbell plot diagram. The effects of different crankshaft materials is evaluated by imposing steel and cast iron material properties on the analysis model. A design of experiment (DOE) study is also performed to investigate the effects of main and rod bearing clearance, damper, and flexplate design on overall engine radiated sound power.
Technical Paper

PIV Characterization of a 4-valve Engine with a Camshaft Profile Switching (CPS) system

Particle Image Velocimetry (PIV) measurements were performed on a single cylinder optically accesible version of a 3.0L 4-valve engine using a Camshaft Profile Switching (CPS) system. The flow field was investigated at two engine speeds (750 and 1500 rpm), two manifold pressures (75 and 90 kPa) and two intake cam centerlines (maximum lift at 95° and 115° aTDCi respectively). Images were taken in the swirl plane at 10 mm and 40 mm below the deck with the piston at 300° aTDC of intake (60° bTDC compression) and BDC respectively. In the tumble plane, images were taken in a plane bisecting the intake valves with the piston at BDC and 300° aTDC. The results showed that the swirl ratio was slightly lower for this system compared with a SCV system (swirl control valve in the intake port) under the same operating conditions. The swirl and tumble ratios generated were not constant over the range of engine speeds and manifold pressures (MAP) but instead increased with engine speed and MAP.
Technical Paper

Up-Front Prediction of the Effects of Cylinder Head Design on Combustion Rates in SI Engines

Accurate prediction of engine combustion characteristics, especially burn rates, can eliminate a number of hardware iterations, thus resulting in a significant reduction in design and developmental time and cost. An analytical methodology has been developed which allows the determination of part-load MBT spark timing to within 2 crank-angle degrees. The design methodology employs the in-house-developed steady-state quasi-dimensional engine simulation model (GESIM), coupled with full-field measurement of the in-cylinder fluid motion at bottom dead center (BDC) in the computer-controlled water analog system (AquaDyne). The in-cylinder flow-field measurements are obtained using 3-D Particle Tracking Velocimetry (3-D PTV), also developed in-house. In this methodology, the in-cylinder flow measurement data are used to calibrate both the tumble and swirl models in GESIM.
Technical Paper

Piston Ring / Cylinder Bore Friction Under Flooded and Starved Lubrication Using Fresh and Aged Engine Oils

The friction reducing capability of engine oils in the piston ring/cylinder bore contact was investigated under fully-flooded and starved lubrication conditions at 100° C using a laboratory piston ring/cylinder bore friction rig. The rig is designed to acquire instantaneous transient measurements of applied loads and friction forces at the ring/bore interface in reciprocating motion over a 50.8 mm stroke. The effects of increasing load and speed on the friction coefficient have been compared with new and used engine oils of different viscosity that were formulated with and without friction modifying additives. Test results with fully formulated engine oils containing molybdenum dithiocarbamate (MoDTC) show that friction is always lower than that obtained with non-friction modified oils but in regions of persistent starvation the coefficient of friction can increase significantly, approaching levels equivalent to fully-flooded non-friction modified formulations.
Technical Paper

The Volume Acoustic Modes of Spark-Ignited Internal Combustion Chambers

Acoustic standing waves are excited in internal combustion chambers by both normal combustion and autoignition. The energy in these acoustic modes can be transmitted through the engine block and radiated as high-frequency engine noise. Using finite-element models of two different (four-valve and two-valve) production engine combustion chambers, the mode shapes and relative frequencies of the in-cylinder volume acoustic modes are calculated as a function of crank angle. The model is validated by comparison to spectrograms of experimental time-sampled waveforms (from flush-mounted cylinder pressure sensors and accelerometers) from these two typical production spark-ignited engines.
Technical Paper

Novel CFD Techniques For In-Cylinder Flows On Tetrahedral Grids

An innovative approach for computing in-cylinder flowfields on tetrahedral grids is developed and demonstrated. The primary focus of the preliminary work presented in this paper is the development of an efficient mesh motion scheme for realistic engine geometries. An automated cell layering technique has been devised which embeds/deletes layers of tetrahedral cells as the cylinder flow domain expands/shrinks. The ability to compute in-cylinder flows using this new “multi-zone” concept is demonstrated for a twin-valve gasoline engine.
Technical Paper

Investigation of a Ford 2.0 L Duratec for Touring Car Racing

This paper summarizes an investigative study done to evaluate the feasibility of a Ford Duratec engine in 2.0 L Touring Car Racing. The investigative study began in early 1996 due to an interest by British Touring Car Championship and North American Touring Car Championship sanctioning bodies to modify rules & demand the engine be production based in the vehicle entered for competition. The current Ford Touring Car entry uses a Mazda based V-6. This Study was intended to determine initial feasibility of using a 2.0 L Duratec V-6 based on the production 2.5L Mondeo engine. Other benefits expected from this study included; learning more about the Duratec engine at high speeds, technology exchange between a production and racing application, and gaining high performance engineering experience for production engineering personnel. In order to begin the Duratec feasibility study, an initial analytical study was done using Ford CAE tools.
Technical Paper

Comparison of Model Calculations and Experimental Measurements of the Bulk Cylinder Flow Processes in a Motored PROCO Engine

A PROCO Flow Simulation (PFSIM) model has been developed to calculate the angular velocity (swirl) and radial velocity (squish) as a function of crank angle for the four strokes of the motored engine cycle. In addition, the PFSIM model calculates the time dependent cylinder pressure, temperature and mass. The model accepts the following swirl-related parameters as input: dimensionless angular momentum and mass flow coefficients for a specific intake and exhaust system configuration. These parameters determine the intake-generated swirl which is computed from the angular momentum flux entering the cylinder during the induction process. An angular momentum flux swirl meter was used to obtain the required input data for three different intake port configurations, and calculations of the bulk cylinder flow were carried out with PFSIM for each intake port configuration.
Technical Paper

The Influence of Cooling System Variables

A vehicle fleet test has been conducted to determine if octane advantages due to selected cooling system variables persist with stabilized deposits. The variables tested were reduced coolant temperatures, a direct substitution of aluminum for the iron cylinder head and an aluminum head with Unique Cooling. Octane requirements, octane requirement increase (ORI), emissions and fuel economy results are presented and discussed. Engine tests to determine the sensitivity of octane to independently controlled engine temperatures confirmed the primary dependence upon coolant temperature. Additional tests identified some of the variables which cause octane differences among the cylinders of one engine and between engine families.
Technical Paper

The Effects of Load Control with Port Throttling at Idle- Measurements and Analyses

An experimental and analytical study was conducted to investigate the effects of load control with port throttling on stability and fuel consumption at idle. With port throttling, the pressure in the intake port increases during the valve-closed period due to flow past the throttle. If the pressure in the port recovers to ambient before the valve overlap period, back flow into the intake system from the cylinder is eliminated. This allows increased valve overlap to be used without increasing the residual mass fraction in the cylinder. Results showed that, with high valve overlap and port throttling, idle stability and fuel consumption can be maintained at values associated with low overlap in a conventionally throttled engine. However, implementation of this concept in production is regarded to require precision-fit and balanced port throttles, an external vacuum pump for vacuum systems support, and revision of the PCV system.
Technical Paper

Non-Linear Finite Element Analysis of Valve Seats and Valve Guides Assembly in Engine Cylinder Head

In the shop floor, cracking issue was noticed during assembly of valve seat and valve guide in the engine cylinder head, especially near the valve seating area. This paper reveals a non- linear finite element methodology to verify the structural integrity of a cylinder head during valve seat and valve guide assembly press-in operation under the maximum material condition, i.e., smallest hole size on cylinder head for valve seat and guide and largest diameter of valve seat and guide. Material and geometrical nonlinearities, and contact are included in this method to replicate the actual seat and guide press-in operation which is being carried out in shop floor. The press-in force required for each valve seat and valve guide assembly is extracted from simulation results to find out the tonnage capacity of pressing machine for cylinder head assembly line. Stress and plastic deformation due to assembly load are the criteria checked against the respective material yield.
Technical Paper

Characterization of Crankcase Pressure Variation during the Engine Cycle of an Internal Combustion Engine

High frequency variations in crankcase pressure have been observed in Inline-four cylinder (I4) engines and an understanding of the causes, frequency and magnitude of these variations is helpful in the design and effective operation of various engine systems. This paper shows through a review and explanation of the physics related to engine operation followed by comparison to measured vehicle data, the relationship between crankcase volume throughout the engine cycle and the observed pressure fluctuations. It is demonstrated that for a known or proposed engine design, through knowledge of the key engine design parameters, the frequency and amplitude of the cyclic variation in crankcase pressure can be predicted and thus utilized in the design of other engine systems.
Technical Paper

Cylinder Head Gasket Fretting/Scrub Mechanism Investigation and Analysis Procedure Developments

Typically, modern automotive engine designs include separate cylinder heads and cylinder blocks and utilize a multilayer steel head gasket to seal the resulting joint. Cylinder head bolts are used to hold the joint together and the non-linear properties of head gasket provide capability to seal the movement within the joint, which is essential for engine durability and performance. There are three major failure modes for head gasket joint: fluid or gas leakage due to low sealing pressure, head gasket bead cracking due to high gap alternation and scrubbing/fretting due to pressure and temperature fluctuations causing lateral movement in the joint. During engine operation, the head gasket design should be robust enough to prevent all three failure modes and the resulting design must consider all three major failure modes to provide acceptable performance.
Technical Paper

Cylinder Head Thermo-Mechanical Fatigue Risk Assessment under Customer Usage

For aluminum automotive cylinder head designs, one of the concerning failure mechanisms is thermo-mechanical fatigue from changes in engine operating conditions. After an engine is assembled, it goes through many different operating conditions such as cold start, through warm up, peak power, and intermediate cycles. Strain alternation from the variation in engine operation conditions change may cause thermo-mechanical fatigue (TMF) failure in combustion chamber and exhaust port. Cylinder heads having an integrated exhaust manifold are especially exposed to this failure mode due to the length and complexity of the exhaust gas passage. First a thermo-mechanical fatigue model is developed to simulate a known dynamometer/bench thermal cycle and the corresponding thermo-mechanical fatigue damage is quantified. Additionally, strain state of the cylinder head and its relation to thermo-mechanical fatigue are discussed. The bench test was used to verify the TMF analysis approach.
Technical Paper

Field Risk Assessment Based on Cylinder Head Design Process to Improve High Cycle Fatigue Performance

In a separate SAE paper (Cylinder Head Design Process to Improve High Cycle Fatigue Performance), cylinder head high cycle fatigue (HCF) analysis approach and damage calculation method were developed and presented. In this paper, the HCF damage calculation method is used for risk assessment related to customer drive cycles. Cylinder head HCF damage is generated by repeated stress alternation under different engine operation conditions. The cylinder head high cycle fatigue CAE process can be used as a transfer function to translate engine operating conditions to cylinder head damage/life. There are many inputs, noises, and design parameters that contribute to the cylinder head HCF damage CAE transfer function such as cylinder pressure, component temperature, valve seat press fit, and cylinder head manufacturing method. Material properties and the variation in material properties are also important considerations in the CAE transfer function.
Technical Paper

An Object-Oriented Approach to the Post-Processing of Cylinder Bore Distortion, Valve Seat Distortion, Valve Guide-to-Seat Misalignment and Cam Bore Misalignment

In CAE analysis of cylinder bore distortion, valve seat distortion, valve guide-to-seat misalignment and cam bore misalignment, nodal displacements on the cylinder bore inner surface and on the gage lines of valve seats, valve guides and cam bores are typically output. Best fit cylinders, best fit circles and best fit lines are computed by utilizing the output displacements of the deformed configuration. Based on the information of the best fit geometry, distortions and misalignments are assessed. Some commercial and in-house software is available to compute the best fit cylinders, best fit circles and best fit lines. However, they suffer from the drawback that only one best-fit geometry can be computed at a time. Using this kind of software to assess distortions and misalignments of engine components would be tedious and prone to error, since data transfer as well as the intermediate computation has to be done by hand, and the process is not automatic.