Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Numerical Modeling of Engine Noise Radiation through the use of Acoustic Transfer Vectors - A Case Study

2001-04-30
2001-01-1514
This paper presents the numerical modeling of noise radiated by an engine, using the so-called Acoustic Transfer Vectors and Modal Acoustic Transfer Vectors concept. Acoustic Transfer Vectors are input-output relations between the normal structural velocity of the radiating surface and the sound pressure level at a specific field point and can thus be interpreted as an ensemble of Acoustic Transfer Functions from the surface nodes to a single field point or microphone position. The modal counter part establishes the same acoustic transfer expressed in modal coordinates of the radiating structure. The method is used to evaluate the noise radiated during an engine run-up in the frequency domain. The dynamics of the engine is described using a finite element model loaded with a rpm-dependent excitation. The effectiveness of the method in terms of calculation speed, compared with classical boundary element methods, is illustrated.
Technical Paper

Experimental Study of Automotive Heat Shield Geometry with Natural Convection and Radiation Boundary Conditions

2001-05-14
2001-01-1746
Shielding a vehicle underbody is becoming a daunting task with increased exhaust temperatures due to emissions regulations and ever-increasing packaging constraints, which place components ever closer to exhaust systems. This experimental study was initiated to evaluate the two dimensional thermal effects of heat shield flange height and shield width in vehicle underbody idle conditions. The ultimate goal of this study is to develop a function to optimize the shape of heat shielding to achieve a specified floorpan temperature during vehicle idle conditions.
Technical Paper

Forward Collision Warning: Preliminary Requirements for Crash Alert Timing

2001-03-05
2001-01-0462
Forward collision warning (FCW) systems are intended to provide drivers with crash alerts to help them avoid or mitigate rear-end crashes. To facilitate successful deployment of FCW systems, the Ford-GM Crash Avoidance Metrics Partnership (CAMP) developed preliminary minimum functional requirements for FCW systems implemented on light vehicles (passenger cars, light trucks, and vans). This paper summarizes one aspect of the CAMP results: minimum requirements and recommendations for when to present rear-end crash alerts to the driver. These requirements are valid over a set of kinematic conditions that are described, and assume successful tracking and identification of a legitimate crash threat. The results are based on extensive closed-course human factors testing that studied drivers' last-second braking preferences and capabilities. The paper reviews the human factors testing, modeling of results, and the computation of FCW crash alert timing requirements and recommendations.
Technical Paper

Child Injuries & Fatalities - Who is Behind the Wheel?

2001-03-05
2001-01-1305
Recent crash data was used to evaluate the safety performance of drivers who transport children. The age difference between drivers and children was found to be an important predictor of crash-related driving behavior and choices. Also, certain driver behaviors and choices when transporting children were identified as creating elevated risk. This study provides information that parents might use to reduce risk when their children are riding with other drivers. The results may also be of interest to professionals concerned with graduated licensing and the establishment and enforcement of laws relating to child endangerment such as drinking and driving with child passengers.
Technical Paper

Design Targets of Seat Integrated Restraint System for Optimal Occupant Protection

2001-03-05
2001-01-0158
Unlike the conventional seat belt system wherein the shoulder belt upper anchor is mounted on the vehicle body, Seat Integrated Restraint (SIR) system has the shoulder belt upper anchor mounted on the top of seat back frame. During a vehicle frontal impact, the stiffness of seat and that of the floor underneath the seat play a significant role in the performance of the restraint system in providing protection to the occupants. In this study the effect of the stiffness of seat and floor on the restraint system is investigated with other restraint parameters such as retractor load limit, fire time lag of dual stage inflator and air bag vent size. The stiffness of seat and floor is varied to determine the range of best occupant protection. This study attempts to establish feasible design targets of seat and floor stiffness for optimal restraint performance.
Technical Paper

Full- and Model-Scale Scrutiny of the Effects of Vehicle Windshield Defrosting and Demisting on Passenger Comfort and Safety

2003-03-03
2003-01-1082
Maintaining adequate visibility at all times, through a vehicle windshield, is critical to the safe usage of the vehicle. The ability of the windshield defrosting and demisting system to quickly and completely melt ice on the outer windshield surface and remove mist formed on the inner surface is therefore of paramount importance. The objectives of this paper are to investigate the fluid flow and heat transfer on the windshield as well the effect of the air discharge from the defroster vents on passenger comfort. The results presented are from numerical simulations validated by experimental measurements both carried out a model and full-scale. The numerical predictions compare well with the experimental measurements at both scales. The effects of the defrosting and demisting air on occupants' comfort and safety are examined.
Technical Paper

Current and Past Technologies for Headliners Including Acoustics, Recycling and Safety

1998-02-23
980951
Headliner technology will be presented in this paper. Older established technologies such as cut & score, fiberglass, hardboard and resinated cotton are still used because of their proven reliability and low cost. But newer processes including polyester, natural fiber, Tramivex™ and urethane offer reliability, structure, acoustic performance and some recyclability. Fiberglass has always been a leader in acoustical performance but has breakage and handability issues in the assembly plants. This paper will be divided in four sections. The first section discusses manufacturing processes for headliners covering current and past. It also covers the materials used and types of facing. This section will state why headliner technology used in the USA is different than Europe or emerging markets. Second section describes acoustics. It will explain performance as related to material types. Porosity, cell type, fiber length and diameter is explained as it relates to the absorption of sound.
Technical Paper

A Constitutive Model for Polyurethane Foams with Strain-Rate and Temperature Effects

1998-02-23
980967
This paper describes the testing and constitutive model development of polyurethane foams for characterization of their material dynamic properties. These properties are needed not only for understanding their behavior, but also for supplying essential input data to foam models, which help provide design directions through simulations of foam selection for cushioning occupant head impacts against the vehicle door and upper interior. Polyurethane foams of varying densities were tested statically and dynamically under uniaxial compressive impact loading at constant velocities of various rates and different temperatures. The test results were utilized for developing a constitutive model of polyurethane foams by taking the density, strain rate and temperature effects into consideration. Uniaxial constitutive models are developed in two ways.
Technical Paper

Paint Inspection Lighting

1998-09-29
982315
An improved defect detection system for painted surfaces has been developed which significantly increases topographic defect visibility (dirt-in-paint, sags/runs/drips, sealer-under-paint, spits, craters, etc.) for the final inspector / polisher. These minor defects can then be repaired before leaving the “spillout” deck. A new luminaire was designed to maximize the contribution of several applicable principles. The new process has significantly reduced the number of defects leaving the spillout area, doubled the number of “zero defect” vehicles, and increased energy savings from 25-40%. The improved Paint Inspection Lighting process was issued as a Uniform Process specification by the Ford Motor Company Vehicle Operations and was implemented in all of the Ford North American assembly plants.
Technical Paper

Role of the Body Mount on the Passenger Compartment Response of a Frame/Body Structured Vehicle in Frontal Crash

1998-02-23
980861
A comprehensive strategy to investigate the role of the body mounts on the passenger compartment response in a frontal crash event is presented. The activities of the study include quasi-static vehicle crush testing, development of a component-level dynamic body mount test methodology, lumped-mass computer modeling, as well as technical analysis. In addition, a means of investigating the effects the body mounts have on the passenger compartment response during a frontal barrier impact is addressed.
Technical Paper

Comparison of BIOSID and EUROSID-1 Dummies in Full-Vehicle Crash Tests

1994-03-01
940563
As a continuation of the AAMA side impact test procedure evaluation, the Association conducted six full-vehicle crash tests according to the NHTSA FMVSS 214 test procedure, but using a EUROSID-1 dummy for the NHTSA SID. The purpose of these tests was to evaluate the EUROSID-1 dummy and compare its responses to the BIOSID dummies previously tested by AAMA under identical conditions. Repeat tests of mid-size Pontiac vehicles with padded and unpadded door interiors were run. The tests showed that the EUROSID-1 dummy chest deflection and Viscous Criterion responses are not repeatable, especially in the rear seat. In addition, it was found that the EUROSID-1 and BIOSID chest deflection responses were different and, sometimes, are directionally opposite.
Technical Paper

Global Acoustic Sensitivity Analysis Applied to the Reduction of Shell Noise Radiation of a Simulated Engine Air Induction System Component

1998-02-23
980280
Global acoustic sensitivity analysis [1] is a technique used to identify structural modifications to a component that can reduce the total radiated power of a vibrating structure or the sound pressure levels at specified field points. This report describes the use of global sensitivity analysis within SYSNOISE to determine what structural changes are required to reduce radiated noise from flexible structures in an open duct system. The technique can help optimize design parameters that define the behavior of a flexible structure such as shell thickness and Young's Modulus. The sensitivity analysis approach consists of separately evaluating structural and acoustic sensitivities. A structural finite element model (FEM) of an open duct system is used to compute the sensitivity of the structural response to changes in thickness. A boundary element model (BEM) is then used to relate changes in the calculated acoustic response to changes in the structural design variables.
Technical Paper

Biofidelity of Anthropomorphic Test Devices for Rear Impact

1997-11-12
973342
This study examines the biofidelity, repeatability, and reproducibility of various anthropomorphic devices in rear impacts. The Hybrid III, the Hybrid III with the RID neck, and the TAD-50 were tested in a rigid bench condition in rear impacts with ΔVs of 16 and 24 kph. The results of the tests were then compared to the data of Mertz and Patrick[1]. At a AV of 16 kph, all three anthropomorphic devices showed general agreement with Mertz and Patrick's data [1]. At a AV of 24 kph, the RID neck tended to exhibit larger discrepancies than the other two anthropomorphic devices. Also, two different RID necks produced significantly different moments at the occipital condyles under similar test conditions. The Hybrid III and the Hybrid III with the RID neck were also tested on standard production seats in rear impacts for a AV of 8 kph. Both the kinematics and the occupant responses of the Hybrid III and the Hybrid III with the RID neck differed from each other.
Technical Paper

Integration of Chassis Frame Forming Analysis into Performance Models to More Accurately Evaluate Crashworthiness

1998-02-23
980551
For Body on Frame vehicles, the chassis truck frame absorbs approximately 70% of the kinetic energy created from a frontal impact. Traditional performance analysis of the chassis utilizes standardized material properties for the Finite Element (FE) Model. These steel properties do not reflect any strain hardening effects that occur during the forming process. This paper proposes a process that integrates the frame side rail forming analysis results into the FE crash model. The process was implemented on one platform at Ford Motor Company to quantify the effects. The forming analysis provided material thinout, yield strength, and tensile strength which were input into the performance model. With the modified properties, the frame deceleration pulse and buckling mode exhibited different characteristics. The integration of CAE disciplines is the next step in increasing the predictability of analytical tools.
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Status and Update of MVMA Component Testing

1987-05-01
871116
At the Tenth ESV Conference, MVMA reported on the development of a component side impact test device developed for MVMA by MGA Research Corporation. Since that time, the test device has been modified by MGA to improve its biofidelity. Testing has shown that the modified device better meets the force-time corridors derived by MVMA from cadaver drop test data. The improved test device was used to test twelve 1985 Ford LTD doors at speeds of 25.7 and 37 km/h. The interior door surfaces were trimmed with either thin fiber board or foam padding identical to doors in vehicles tested by MVMA using NHTSA's full-vehicle test procedure. The tests showed that the MVMA device is simple to set up and run, is highly repeatable and easily discriminates between the unpadded and padded doors. A major issue for future research and development is how to select a priori a component test device impact speed which can account for differences in car size and side structure stiffness.
Technical Paper

The 1973 Ford Impact Absorbing Bumper System

1973-02-01
730032
The Federal government requires that all 1973 passenger cars be capable of withstanding a 5 mph front bumper and a 2.5 mph rear bumper fixed-barrier impact without damage to safety related components (lighting, latching, fuel, exhaust, cooling, propulsion, steering and braking systems). Two basic ways in which the impact energy can be handled are: (1) a thick flexible, external covering or large, flexible bumper guards attached to a rigid bumper-bar which is rigidly attached to the chassis by suitable supports; (2) a rigid reinforced bumper-bar attached to the chassis by means of compliant or compressible impact absorbing devices. While this general approach is used on most 1973 cars, the details of operation of the various systems are markedly different. Whereas, some of the systems utilize fluid-flow through an orifice to absorb energy, Ford Motor Company devices utilize shear deformation of rectangular rubber blocks.
Technical Paper

Cylinder Head Thermo-Mechanical Fatigue Risk Assessment under Customer Usage

2017-03-28
2017-01-1086
For aluminum automotive cylinder head designs, one of the concerning failure mechanisms is thermo-mechanical fatigue from changes in engine operating conditions. After an engine is assembled, it goes through many different operating conditions such as cold start, through warm up, peak power, and intermediate cycles. Strain alternation from the variation in engine operation conditions change may cause thermo-mechanical fatigue (TMF) failure in combustion chamber and exhaust port. Cylinder heads having an integrated exhaust manifold are especially exposed to this failure mode due to the length and complexity of the exhaust gas passage. First a thermo-mechanical fatigue model is developed to simulate a known dynamometer/bench thermal cycle and the corresponding thermo-mechanical fatigue damage is quantified. Additionally, strain state of the cylinder head and its relation to thermo-mechanical fatigue are discussed. The bench test was used to verify the TMF analysis approach.
Technical Paper

Field Risk Assessment Based on Cylinder Head Design Process to Improve High Cycle Fatigue Performance

2017-03-28
2017-01-1085
In a separate SAE paper (Cylinder Head Design Process to Improve High Cycle Fatigue Performance), cylinder head high cycle fatigue (HCF) analysis approach and damage calculation method were developed and presented. In this paper, the HCF damage calculation method is used for risk assessment related to customer drive cycles. Cylinder head HCF damage is generated by repeated stress alternation under different engine operation conditions. The cylinder head high cycle fatigue CAE process can be used as a transfer function to translate engine operating conditions to cylinder head damage/life. There are many inputs, noises, and design parameters that contribute to the cylinder head HCF damage CAE transfer function such as cylinder pressure, component temperature, valve seat press fit, and cylinder head manufacturing method. Material properties and the variation in material properties are also important considerations in the CAE transfer function.
Technical Paper

CAE Predictions for Cardan Joint Induced Driveline NVH

2017-03-28
2017-01-1136
Automotive vehicles equipped with Cardan joints may experience low frequency vehicle launch shudder vibration (5-30Hz) and high frequency driveline moan vibration (80-200Hz) under working angles and speeds. The Cardan joint introduces a 2nd order driveshaft speed variation and a 4th order joint articulation torque (JAT) causing the vehicle shudder and moan NVH issues. Research on the Cardan joint induced low frequency vehicle shudder using a Multi-Body System (MBS) method has been attempted. A comprehensive MBS method to predict Cardan joint induced high frequency driveline moan vibration is yet to be developed. This paper presents a hybrid MBS and Finite Element Analysis (FEA) approach to predict Cardan joint induced high frequency driveshaft moan vibration. The CAE method considers the elastically coupled driveshaft bending and engine block vibration due to Cardan joint excitation.
X