Refine Your Search



Search Results

Technical Paper

Measurement of Dynamic Parameters of Automotive Exhaust Hangers

Different methodologies to test and analyze the dynamic stiffness (K) and damping (C) properties of several silicone and EPDM rubber automotive exhaust hangers were investigated in this research. One test method utilized a standard MTS hydraulic test machine with a single sine excitation at discrete frequencies and amplitude levels, while a second method utilized an electrodynamic shaker with broadband excitation. Analysis techniques for extracting the equivalent stiffness and damping were developed in the shaker tests using data from time domain, frequency domain, as well as force transmissibility. A comparison of all of the shaker testing methods for repeatability and accuracy was done with the goal of determining the appropriate method that generates the most consistent results over the range of testing. The shaker testing in the frequency domain using a frequency response function model produced good results and the set-up is relatively inexpensive.
Technical Paper

FordS Zero Emission P2000 Fuel Cell Vehicle

The P2000 Fuel Cell Electric Vehicle developed by Ford Motor Company is the first full-performance, full-size passenger fuel cell vehicle in the world. This development process has resulted in a vehicle with performance that matches some of today's vehicles powered by internal combustion engines. The powertrain in Ford's P2000 FCEV lightweight aluminum vehicle consists of an Ecostar electric motor/transaxle and a fuel cell system developed with XCELLSiS-The Fuel Cell Engine Company (formerly dbb Fuel Cell Engines, Inc.). Ballard's Mark 700 series fuel cell stack is a main component in the fuel cell system. To support this new FCEV, Ford has constructed the first North American hydrogen refueling station capable of dispensing gaseous and liquid hydrogen. On-going research and development is progressing to optimize fuel cell vehicle performance and refueling techniques.
Technical Paper

The Ford Motor Company Transmission NVH Test Cell

Effectively managing transmission noise, vibration and harshness (NVH) has become increasingly important for maximizing customer satisfaction and fostering the perception of quality in contemporary cars and trucks. As overall vehicle and engine masking levels have dramatically decreased in recent times, low level tonal noises generated by transmission internals have gained significance and therefore have a greater effect on the NVH performance of vehicles. Recognizing the importance of this trend, Ford Motor Company recently designed and built a state-of-the-art research and development facility to be used for reducing noise and vibration generated by automatic and manual vehicle transmissions. The significant design features and validation results of this facility are described in this paper.
Technical Paper

Drawbeads in Sheet Metal Stamping - A Review

The paper reviews the role of drawbeads in sheet metal stamping. The design of drawbeads is discussed in depth, with treatment of different bead cross sections, bead end shapes, and bead materials. International standards and practices are included. This is followed by the historical development of the modeling of the drawbead restraining force, starting with basic equilibrium approaches, and leading to the use of the finite element method which permits the study of drawbead effects on sheet metal flow in three dimensions. Finally, the potential of active drawbeads is described based upon ongoing research which is directed toward closed-loop computer control of the stamping process through adjustment of the drawbead penetration.
Technical Paper

Fundamental Issues in Automotive Veiling Glare

The veiling glare effect in automotive vehicles consists of diffuse and specular scattering of sunlight onto and from the windshield. This effect occurs over a wide range of solar elevation angles and increases with increased degree of inclination of the windshield. Thus its effect on visual acuity must be considered in automotive design. The present research on the subject of veiling glare only addresses scattering from a clean windshield and ignores the larger effect of scattering from dust, dirt or haze on the front and back faces of the windshield since the latter is operator dependent (can be removed by cleaning the windshield). In this paper, we present an analysis of autmotive veiling glare that takes into account windshield reflectivity without and with coatings, and the characteristics of dashboard cover materials.
Technical Paper

Status and Update of MVMA Component Testing

At the Tenth ESV Conference, MVMA reported on the development of a component side impact test device developed for MVMA by MGA Research Corporation. Since that time, the test device has been modified by MGA to improve its biofidelity. Testing has shown that the modified device better meets the force-time corridors derived by MVMA from cadaver drop test data. The improved test device was used to test twelve 1985 Ford LTD doors at speeds of 25.7 and 37 km/h. The interior door surfaces were trimmed with either thin fiber board or foam padding identical to doors in vehicles tested by MVMA using NHTSA's full-vehicle test procedure. The tests showed that the MVMA device is simple to set up and run, is highly repeatable and easily discriminates between the unpadded and padded doors. A major issue for future research and development is how to select a priori a component test device impact speed which can account for differences in car size and side structure stiffness.
Technical Paper

Human-Centered Measurement Scales in Automotive Product Development

There is a strong business case for automotive companies to improve by understanding what consumers want, like and dislike. Various aspects of ergonomics such as reach, visibility, usability, feel are dependent on measuring consumer’s ability, opinions and satisfaction. Rating scales (such as adjective, continuous, logarithmic, etc.) are used to measure these complex attitudes. It is essential the correct rating scale and appropriate analysis methods are used to capture these attitudes. Previous psychology research has been conducted on the performance of different rating scales. This ratings scale research focused on scales and their reliability and validity for various applications. This paper will summarize past research, discuss the use of rating scales specific to vehicle ergonomics, and analyze the results of an automotive interface study that correlates the seven-point adjective rating scale to the system usability score (SUS).
Technical Paper

A Review of Human Physiological, Psychological & Human Biomechanical Factors on Perceived Thermal Comfort of Automotive Seats.

Thermal comfort in automotive seating has been studied and discussed for a long time. The available research, because it is focused on the components, has not produced a model that provides insight into the human-seat system interaction. This work, which represents the beginning of an extensive research program, aims to establish the foundation for such a model. This paper will discuss the key physiological, psychological, and biomechanical factors related to perceptions of thermal comfort in automotive seats. The methodology to establish perceived thermal comfort requirements will also be presented and discussed.
Technical Paper

Chess Model Applications In Headlamp Systems Evaluation

This paper presents the results of three studies conducted by using the Ford Comprehensive Headlamp Environment Systems Simulation (CHESS) model. This model provides a much broader, more comprehensive and more economical computerized method for measuring head lighting performance than the traditional seeing distance field tests. The model was developed from an extensive program including nighttime field tests, traffic surveys and analysis and applications of earlier research work. The first study was conducted to determine the effect of horizontal and vertical aim on the visual performance of low beams. The second study was conducted to evaluate the effect of headlamp mounting height on low beam performance. The third study was conducted to correlate the performances of various existing and experimental low beam systems with their beam patterns.
Technical Paper

Autonomous Driving - A Practical Roadmap

Successful demonstrations of fully autonomous vehicle operation in controlled situations are leading to increased research investment and activity. This has already resulted in significant advancements in the underlying technologies necessary to make it a practical reality someday. Not only are these idealized events sparking imaginations with the potential benefits for safety, convenience, fuel economy and emissions, they also embolden some to make somewhat surprising and sometimes astonishing projections for their appearance on public roads in the near future. Are we now ready for a giant leap forward to the self-driving car with all its complexity and inter-dependencies? Humans will need to grow with and adapt to the technological advancements of the machine and we'll deeply challenge our social and political paradigms before we're done. Even if we as engineers are ready, is the driving public ready?
Technical Paper

End-of-line noise testing for transmission plant

In NVH, the common sense is that quiet vehicles are vehicle which sources of noise are controlled. Transmission whine noise is an example of how is important to avoid unexpected noise coming from a specific component or system to the consumers. This paper is based on Ford's recent experience of researching and measuring to improve the end-of-line noise testing of its transmission manufacturing plant in Brazil. The approach is based on 6Sigma disciplines. There is not emphasis in the academic behaves of noise and vibration, or even the root cause of problems, but basically in the methodology in how to detect transmission noise still in the manufacturing line for immediate action and repair (if necessary) avoiding any issue to the consumer (internal - vehicle assemble line and vehicle buyers).
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
Technical Paper

Automotive Manufacturing Task Analysis: An Integrated Approach

Automotive manufacturing presents unique challenges for ergonomic analysis. The variety of tasks and frequencies are typically not seen in other industries. Moving these challenges into the realm of digital human modeling poses new challenges and offers the opportunity to create and enhance tools brought over from the traditional reactive approach. Chiang et al. (2006) documented an enhancement to the Siemen's Jack Static Strength Prediction tool. This paper will document further enhancements to the ErgoSolver (formerly known as the Ford Static Strength Prediction Solver).
Technical Paper

Wood-to-Wheels: A Multidisciplinary Research Initiative in Sustainable Transportation Utilizing Fuels and Co-Products from Forest Resources

Michigan Technological University has established a broad-based university-wide research initiative, termed Wood-to-Wheels (W2W), to develop and evaluate improved technologies for growing, harvesting, converting, and using woody biomass in renewable transportation fuel applications. The W2W program bridges the entire biomass development-production-consumption life cycle with research in areas including forest resources, bioprocessing, engine/vehicle systems, and sustainable decisions. The W2W chain establishes a closed cycle of carbon between the atmosphere, woody biomass, fuels, and vehicular systems that can reduce the accumulation of CO2 in the atmosphere. This paper will summarize the activities associated with the Wood-to-Wheels initiative and describe challenges and the potential benefits that are achievable.
Technical Paper

A Generic Fault Maturing and Clearing Strategy for Continuous On-Board Diagnostic Monitoring

Per California Air Resources Board (CARB) regulations, On-board diagnostic (OBD) of vehicle powertrain systems are required to continuously monitor key powertrain components, such as the circuit discontinuity of actuators, various circuit faults of sensors, and out-of-range faults of sensors. The maturing and clearing of these continuous monitoring faults are critical to simplification of algorithm design, save of engineering cost (i.e., calibration), and reduction of warranty issues. Due to the nature of sensors (to sense different physical quantities) and actuators (to output energy in desired ways), most of OEM and supplies tend to choose different fault maturing and clearing strategy for sensors and actuators with different physics nature, such as timer-based, counter-based, and other physical-quantity-based strategies.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Technical Paper

Organic Light-Emitting Diode: Prospects for Automotive Area

Organic light-emitting diode (OLED) is a promising technology that presents many important features to improve the efficiency of lighting and screen applications. The automotive lighting application requirements are prompting lots of research related to this solid-state light source. The aim of this study is to understand the OLED technology and discuss its main characteristics, such as luminance, efficiency, lifetime, emitting color, and organic materials. Also, to investigate the opportunities and requirements to be applied in vehicle exterior lighting.
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Technical Paper

Smart On-Street Parking System to Predict Parking Occupancy and Provide a Routing Strategy Using Cloud-Based Analytics

It is estimated that up to 30% of traffic in cities is due to drivers searching for parking. Research suggests that drivers spend an average of 6-14 minutes looking for an available space in London. This increases individual stress levels as well as congestion and pollution. Parking Guidance Systems provide an effective way to reduce parking search time by presenting drivers with dynamic information on parking. An accurate prediction and recommendation analytics algorithm is the key part of the system combining real time cloud-based analytics and historical data trends that can be integrated into a smart parking user application. This paper develops a prediction algorithm based on transient queuing theory and Laplace transform to predict parking occupancy thus predicting open parking locations.
Technical Paper

Automation of Road Vehicles Using V2X: An Application to Intersection Automation

Today, automated vehicles mostly rely on ego vehicle sensors such as cameras, radar or LiDAR sensors that are limited in their sensing capability and range. Vehicle-to-everything (V2X) communication has the potential to appropriately complement these sensors and even allow for a cooperative, proactive interaction of vehicles. As such, V2X communication might play a vital role on the way to smart and efficient traffic solutions. In the public funded research project UK Autodrive, we are currently investigating and experimentally evaluating V2X-based applications based on dedicated short range communication (DSRC). Moreover, the novel application intersection priority management (IPM) is part of the research project. IPM aims at automating intersections in such a way that vehicles can pass safely and even more efficiently without the use of traffic lights or signs.