Refine Your Search



Search Results

Technical Paper

The Application of Experimental Design Method to Brake Induced Vehicle Vibrations

Vehicle sensitivity to brake induced vehicle vibration has been one of the key factors impacting overall vehicle quality. This directly affects long term customer satisfaction. The objective of this investigation is to understand the sensitivities of a given suspension, and steering system with respect to brake induced vehicle vibration, and develop possible solutions to this problem. Design of experiment methods have been used for this chassis system sensitivity study. The advantage of applying the design of experiment methodology is that it facilitates an understanding of the interactions between the hardware components and the sensitivity of the system due to the component change. The results of this investigation have indicated that the friction of suspension joints may affect vehicle system response significantly.
Technical Paper

Chassis System Integration Approach for Vehicle High Mileage NVH Robustness

High mileage NVH performance is one of the major concerns in vehicle design for long term customer satisfaction. Elastomeric bushings and brake rotors are key chassis components which tend to degrade as vehicle mileage accumulates with time. The degradation of these components normally causes the overall degradation of vehicle NVH performance. In the current paper two categories of problems are addressed respectively: road-induced vibration due to bushing degradation, and brake roughness due to rotor wear. A system integration approach is used to derive the design strategies that can potentially make the vehicle more robust in these two NVH attributes. The approach links together bushing degradation characteristics, brake rotor wear characteristics, the design of experiment (DOE) method, and CAE modeling in a systematic fashion. The concept and method are demonstrated using a production vehicle.
Technical Paper

The Effect of Contact Surface and Bolt Torque Variations on the Brake Rotor Run-Out

Deformation of the hub, rotor, and the wheel results in lateral run-out of the rotor. The effect of contact surface variations and bolt forces on the deformation is investigated. It is analytically shown that the run-out due to deformation is caused primarily due to the radial and circumferential moments generated in the hub and the rotor due to bolt tightening. Case studies illustrate the interaction between hub, rotor, and the wheel for various surface conditions. Design guidelines are provided to reduce rotor run-out.
Technical Paper

Electronic Transfer Case for 1990 Aerostar Electronic Four Wheel Drive

A transfer case was designed to utilize electronic control. It has a planetary interaxle differential for proportional torque split. An electromagnetic clutch is applied across the differential to enhance mobility when road coefficients allow single wheel or single axle traction loss. The need for clutch actuation is monitored by an electronic module and sensor system, that detects abnormal amounts of differentiation in the interaxle unit. Clutch actuation is signaled and controlled by the module, which is also electrically connected to the rear axle ABS brake system to eliminate any possible simultaneous function compatibility issues. System emphasis is on foul weather mobility when negotiating highway and secondary roads. The family vehicle market was targeted and performance parameters were adjusted toward mobility and driver confidence to complete a given trip.
Technical Paper

Regenerative Braking Control Development for P2 Parallel Hybrid Electric Vehicles

Regenerative braking in hybrid electric vehicles is an essential feature to achieve the maximum fuel economy benefit of hybridization. During vehicle braking, the regenerative braking recuperates its kinetic energy, otherwise dissipated into heat due to friction brake, into electrical energy to charge the battery. The recuperation is realized by the driven wheels propelling, through the drivetrain, the electric motor as a generator to provide braking while generating electricity. “Rigid” connection between the driven wheels and the motor is critical to regenerative braking; otherwise the motor could drive the input of the transmission to a halt or even rotating in reverse direction, resulting in no hydraulic pressure for transmission controls due to the loss of transmission mechanical oil pump flow.
Technical Paper

An Indirect Occupancy Detection and Occupant Counting System Using Motion Sensors

This paper proposes a low-cost but indirect method for occupancy detection and occupant counting purpose in current and future automotive systems. It can serve as either a way to determine the number of occupants riding inside a car or a way to complement the other devices in determining the occupancy. The proposed method is useful for various mobility applications including car rental, fleet management, taxi, car sharing, occupancy in autonomous vehicles, etc. It utilizes existing on-board motion sensor measurements, such as those used in the vehicle stability control function, together with door open and closed status. The vehicle’s motion signature in response to an occupant’s boarding and alighting is first extracted from the motion sensors that measure the responses of the vehicle body. Then the weights of the occupants are estimated by fitting the vehicle responses with a transient vehicle dynamics model.
Technical Paper

A System for Autonomous Braking of a Vehicle Following Collision

This paper presents two brake control functions which are initiated when there is an impact force applied to a host vehicle. The impact force is generated due to the host vehicle being collided with or by another vehicle or object. The first function - called the post-impact braking assist - initiates emergency brake assistance if the driver is braking during or right after the collision. The second function - called the post-impact braking - initiates autonomous braking up to the level of the anti-lock-brake system if the driver is not braking during or right after the collision. Both functions intend to enhance the current driver assistance features such as emergency brake assistance, electronic stability control, anti-brake-lock system, collision mitigation system, etc.
Technical Paper

Robust Observer Roll Rate Sensor Fault Detection

The detection and diagnosis of sensor faults in real-time is necessary for satisfactory performance of vehicle Electronic Stability Control (ESC) and Roll Stability Control (RSC) systems. This paper presents an observer designed to detect faults of a roll rate sensor that is robust to model uncertainties and disturbances. A reference vehicle roll angle estimate, independent of roll-rate sensor measurement, is formed from available ESC inertial sensor measurements. Residuals are generated by comparing the reference roll angle and roll rate, with the observer outputs. Stopping rules based on the current state of the vehicle and the magnitude of the residuals are then used to determine if a sensor fault is present. The system’s low order allows for efficient implementation in real-time on a fixed-point microprocessor. Modification of the roll rate sensor signal during in vehicle experiments shows the algorithm’s ability to detect faults.
Technical Paper

An Advanced Yaw Stability Control System

This paper presents an advanced yaw stability control system that uses a sensor set including an inertial measurement unit to sense the 6 degrees-of-freedom motions of a vehicle. The full degree of the inertial measurement unit improves and enhances the vehicle motion state estimation over the one in the traditional electronic stability controls. The addition of vehicle state estimation leads to the performance refinement of vehicle stability control that can improve performance in certain situations. The paper provides both detailed system description and test results showing the effectiveness of the system.
Technical Paper

Driver Identification Using Vehicle Telematics Data

Increasing number of vehicles are equipped with telematics devices and are able to transmit vehicle CAN bus information remotely. This paper examines the possibility of identifying individual drivers from their driving signatures embedded in these telematics data. The vehicle telematics data used in this study were collected from a small fleet of 30 Ford Fiesta vehicles driven by 30 volunteer drivers over 15 days of real-world driving in London, UK. The collected CAN signals included vehicle speed, accelerator pedal position, brake pedal pressure, steering wheel angle, gear position, and engine RPM. These signals were collected at approximately 5Hz frequency and transmitted to the cloud for offline driver identification modeling. A list of driving metrics was developed to quantify driver behaviors, such as mean brake pedal pressure and longitudinal jerk. Random Forest (RF) was used to predict driver IDs based on the developed driving metrics.
Technical Paper

Comprehensive Diagnostic Methodology

An average luxury car contains more than 50 sensors connected, to over 28 microprocessors, through multiple communication networks. What makes these complex machines diagnosable at a dealership, is the ability of sophisticated diagnostics algorithms. Besides use of diagnostics in service, diagnosing a failure is also key for functional safety and vehicle availability. Safety related diagnostic functions such as loss of Brake fluid and leaky fuel system detection are critical. Once a failure is detected, Vehicle availability functions extend vehicle operation, so that one could reach the dealership without being stranded. The number of failure modes in a car could far exceed tens of thousands, thereby identifying key failure modes that require diagnostics can be a challenge.
Technical Paper

Novel Approach to Integration of Turbocompounding, Electrification and Supercharging Through Use of Planetary Gear System

Technologies that provide potential for significant improvements in engine efficiency include, engine downsizing/downspeeding (enabled by advanced boosting systems such as an electrically driven compressor), waste heat recovery through turbocompounding or organic Rankine cycle and 48 V mild hybridization. FEV’s Integrated Turbocompounding/Waste Heat Recovery (WHR), Electrification and Supercharging (FEV-ITES) is a novel approach for integration of these technologies in a single unit. This approach provides a reduced cost, reduced space claim and an increase in engine efficiency, when compared to the independent integration of each of these technologies. This approach is enabled through the application of a planetary gear system. Specifically, a secondary compressor is connected to the ring gear, a turbocompounding turbine or organic Rankine cycle (ORC) expander is connected to the sun gear, and an electric motor/generator is connected to the carrier gear.
Technical Paper

The 1970 Ford Dual Circuit Air Brake System

The braking system presented in this article represents a new and forward thinking philosophy regarding commercial vehicle air brake systems. A concept that provides responsive service and emergency brake applications with optimum vehicle control, by the same driver action on the brake pedal. The uniqueness of the total system, and each circuit's function thereof, is explained in basic detail. In addition, the engineering, quality control, and assembly techniques to manufacture the vehicle with assurance that design intent is achieved, are discussed.
Technical Paper

A Statistical Evaluation of Brake Performance

Utilization of statistical methods can improve vehicle stopping-distance projections and reduce the complexity of brake deceleration models. These techniques can be very useful in the course of ascertaining whether an untested vehicle conforms to the applicable Federal Motor Vehicle Safety Standard (FMVSS), but they have much broader uses in the design of brake systems.
Technical Paper

Development of Universal Brake Test Data Exchange Format and Evaluation Standard

Brake system development and testing is spread over vehicle manufacturers, system and component suppliers. Test equipment from different sources, even resulting from different technology generations, different data analysis and report tools - comprising different and sometimes undocumented algorithms - lead to a difficult exchange and analysis of test results and, at the same time, contributes to unwanted test variability. Other studies regarding the test variability brought up that only a unified and unambiguous data format will allow a meaningful and comparative evaluation of these data and only standardization will reveal the actual reasons of test variability. The text at hand illustrates that a substantial part of test variability is caused by a misinterpretation of data and/or by the application of different algorithms.
Technical Paper

The Effects of Flare Component Specifications on the Sealing of Double Inverted Flare Brake Tube Joints

While SAE double inverted flares have been in use for decades, leaking joints continue to be a problem for OEMs in production settings consuming time and energy to detect and correct them before releasing vehicles from the assembly plant. It should be noted that this issue is limited to first-time vehicle assembly; once a flared brake tube joint is sealed at the assembly plant it remains sealed during normal customer usage. From their inception through the late 1980s most brake tubes have been 3/16″ nominal diameter. With the advent of higher flow requirements of Traction Control and Yaw/Stability control systems, larger tubes of 1/4″ and 5/16″ size have also been introduced. While it was known that the first-time sealing capability of the 3/16″ joint was not 100%, leakers were generally containable in the production environment and the joint was regarded as robust.
Technical Paper

Potential for Commonization of Brake Testing for Globally Marketed Vehicles

From the brake system point of view the world can be split into comfort and performance markets. This market split evolved historically and reflects local legal requirements, driving style and the customer expectations. Noise, cold judder and brake dust play the dominant role in the perception of the customer on the comfort market. The performance markets call for high friction level and good fade performance. Currently these customer needs can only be satisfied by usage of different pad materials: NAO and Semi Met materials for comfort markets and generally Low Met materials for performance markets. Due to the differences mentioned above, additional brake system development and testing is done (different testing locations for the same brake attribute). Harmonizing testing, usage of the same test location and same test method could save not only the human resources but also decrease the number of prototypes used in the development phases.
Technical Paper

Noise Source Identification Using Phase Analysis

Noise source identification has been a subject well studied in the past few years. Automobile manufactures along with specialized supplies have been developed some methods in this matter. The importance of such subject is quite obvious, especially in the auto industry: identify potential problems and point out solutions for NVH. There are several methods of noise source identification widely used. Among them, one can mention "Hotspot Search," which consists of noise intensity measurement, mapping and ranking the relative contribution of each substructure of one body. Another method used, one can point out is the STSF (Spatial Transformation of Sound Fields). It consists of a measurement over a scan plane using a set of microphone array. In this way, a 2D sound field can be transformed in a 3D description and source direction can be identified.
Technical Paper

Friction Material Compressibility as a Function of Pressure, Temperature, and Frequency

Compressibility is a common quality metric for friction materials. In addition, it is typically used as an engineering parameter for brake system design and performance. Compressibility (or elastic properties) of the friction material can effect brake roughness, pedal feel, and noise performance. A characterization technique is presented to determine the cyclic compressibility (over ± 1 kN) as a function of preload, temperature, frequency and time. The initial motivation was related to modeling of brake roughness, but applications to pedal feel and brake noise are also explored. For a given semi-metallic material, changing the temperature from 20 to 300°C or the preload from 8 to 4 kN both halve the cyclic compressibility. Less significantly, a change in frequency from 20 to 1 Hz reduces the cyclic compressibility by 10%. Differences between linings are also considered.
Technical Paper

Reduction of Groan and Grind Noise in Brake Systems

Low frequency brake system noise has been a systemic and ongoing issue for several automakers. The noise is a combined effect of brake and suspension systems working with each other. The noise transmission path is also important. The latest warranty and quality indicators on this has resulted in high degree of dissatisfaction for several vehicles. The customer complaints have been for grind noise, grunt and groan. The team focused on a multi-level integrated approach for this problem. The first step was deep diving and dissecting the customer complaint data. The low frequency noise for grind and groan can be reduced to several contributors. One of the main issues was the movement of pads over the rotor fins resulting in dynamic groan type of noise. It was important to relate this to the customer complaint for grind. In association with that, the grind noise was also caused by in-stop grunt type of noise.