Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Exhaust Manifold Radiated Noise Prediction Methodology

2001-04-30
2001-01-1433
The spark ignition engine is a prime source of vibration energy. NVH disturbances generated by the engine ultimately reach the customer in the form of objectionable noise or NVH. Exhaust Manifolds are one of the many sources of noise contributors among the engine components. Often, the exhaust manifold is identified as a source of objectionable NVH late in the design and development process. Due to the lack of an upfront NVH analysis tool, a new CAE NVH methodology for evaluating new exhaust manifold designs has been investigated and developed by the Ford Motor Company's V-Engine CAE and Exhaust Manifold Design Sections. This new CAE methodology has been developed to compare the NVH performance of current production exhaust manifolds to new design levels. Mechanical induced radiated shell noise is the predominate cause of objectionable NVH in exhaust manifolds.
Technical Paper

Numerical Modeling of Engine Noise Radiation through the use of Acoustic Transfer Vectors - A Case Study

2001-04-30
2001-01-1514
This paper presents the numerical modeling of noise radiated by an engine, using the so-called Acoustic Transfer Vectors and Modal Acoustic Transfer Vectors concept. Acoustic Transfer Vectors are input-output relations between the normal structural velocity of the radiating surface and the sound pressure level at a specific field point and can thus be interpreted as an ensemble of Acoustic Transfer Functions from the surface nodes to a single field point or microphone position. The modal counter part establishes the same acoustic transfer expressed in modal coordinates of the radiating structure. The method is used to evaluate the noise radiated during an engine run-up in the frequency domain. The dynamics of the engine is described using a finite element model loaded with a rpm-dependent excitation. The effectiveness of the method in terms of calculation speed, compared with classical boundary element methods, is illustrated.
Technical Paper

Errors in the Driveline System Balancing Process

2001-04-30
2001-01-1504
Single-plane balancing is a very well-understood process, whereby an imbalance vector is determined and then opposed by a similar vector of equal magnitude but 180° out of phase. This is used in many situations to improve machine performance, vibration, noise etc. However, there is inherent in this process a sensitivity to errors of measurement and correction, since a large imbalance vector and the equally large correction vector must be of exactly equal magnitude and exactly 180° apart for perfect balance. This paper examines the effect of errors in measurement of the initial imbalance and correction of it on the residual balance of automotive drivelines. In particular, it examines the effects of the errors present in a system whereby a system balance correction is made, on a driveline assembly, at discrete points around a given plane (at bolt locations). Errors occur in measurement of vibration, in calculating correction masses and in applying those correction masses.
Technical Paper

Experimental Determination of Automotive System Response Characteristics

2001-04-30
2001-01-1477
Vehicle NVH performance is significantly affected by the dynamics of various primary systems. In the automotive industry, different design activities or vendors are responsible for designing various different systems simultaneously. Therefore, it is highly desirable to gain a better understanding of the individual system characteristics and the interaction between the primary systems to achieve a desirable overall NVH performance. Unfortunately, it is usually quite difficult to construct a proper fixture to accurately measure and quantify the actual uncoupled system characteristics. This paper examines an alternate approach of applying the FRF-based substructuring method to back-calculate the system response characteristics from the full vehicle system measurements. The results are then used to forward-compute the dynamic response of the vehicle, which are also validated by comparison to the direct response function measurements.
Technical Paper

Wavelet-Based Visualization of Impulsive and Transient Sounds in Stationary Background Noise

2001-04-30
2001-01-1475
Scalograms based on shift-invariant orthonormal wavelet transforms can be used to analyze impulsive and transient sounds in the presence of more stationary sound backgrounds, such as wind noise or drivetrain noise. The visual threshold of detection for impulsive features on the scalogram (signal energy content vs. time and frequency,) is shown to be similar to the audible threshold of detection of the human auditory system for the corresponding impulsive sounds. Two examples of impulsive sounds in a realistic automotive sound background are presented: automotive interior rattle in a vehicle passenger compartment, and spark knock recorded in an engine compartment.
Technical Paper

Powerplant Block-Crank Dynamic Interaction and Radiated Noise Prediction

2003-05-05
2003-01-1735
This paper discusses flexible, multi-body, coupled dynamic simulation of a crankshaft system acting upon a power plant structure that includes an engine block, cylinder heads, oil pan, crank train (i.e., crankshaft, connecting rods, bearings etc.) and transmission. The simulation is conducted using AVL/EXCITE [1]. Engine loads are first predicted, and then used to compute radiated noise from the engine assembly. Radiated noise level is computed by sweeping the excitation frequency through a range associated with the normal operating RPM of the engine. The results of the radiated noise computation are plotted on a “3D” Campbell plot diagram. The effects of different crankshaft materials is evaluated by imposing steel and cast iron material properties on the analysis model. A design of experiment (DOE) study is also performed to investigate the effects of main and rod bearing clearance, damper, and flexplate design on overall engine radiated sound power.
Technical Paper

Local-Global Finite-Element Analysis for Cam Cover Noise Reduction

2003-05-05
2003-01-1725
Valve covers are a primary source of radiated engine noise. In this paper, we discuss an analytical approach that captures the complicated nonlinear response of the cam cover gaskets and grommets without the need for a prohibitively large finite-element model of the cam cover system. We utilize a detailed local analysis of the gasket and grommet components and abstract their isolation characteristics for later use in a global NVH (Noise-Vibration-Harshness) system analysis.
Technical Paper

Development of Dual Mode Engine Crank Damper

2003-05-05
2003-01-1675
The paper presents development work of dual mode crank dampers implemented on 3.0L V6 engines. The history and the theoretic background of the crank dampers are reviewed. The development starts with measurement of crank bending by modal testing on static condition and by optical decode system on a running engine. Modal analysis theory is also described in the Appendix to explain how the test boundary conditions may greatly affect the measured damper frequencies and a recommended method is presented. The damper frequencies are defined by using transmissibility ratio to simplify the test process and eliminate effects of boundary conditions. To verify the effectiveness of the damper, engine dyno and vehicle road tests are conducted. The results show that the dual mode dampers cannot substantially reduce airborne noise, however they can make engine mount vibrations lower (about 30% in high RPM range) and therefore reduce the structure-borne noise.
Technical Paper

A New Experimental Methodology to Estimate Chassis Force Transmissibility and Applications to Road NVH Improvement

2003-05-05
2003-01-1711
The performance of structure-borne road NVH can be cascaded down to three major systems: 1) vehicle body structure, 2) chassis/suspension, 3) tire/wheel. The forces at the body attachment points are controlled by the isolation efficiency of the chassis/suspension system and the excitation at the spindle/knuckle due to the tire/road interaction. The chassis force transmissibility is a metric to quantify the isolation efficiency. This paper presents a new experimental methodology to estimate the chassis force transmissibility from a fully assembled vehicle. For the calculation of the transmissibility, the spindle force/moment estimation and the conventional Noise Path Analysis (NPA) methodologies are utilized. A merit of the methodology provides not only spindle force to body force transmissibility but also spindle moment to body force transmissibility. Hence it enables us to understand the effectiveness of the spindle moments on the body forces.
Technical Paper

Wind Noise and Drag Optimization Test Method for Sail-Mounted Exterior Mirrors

2003-05-05
2003-01-1702
An L18 Taguchi-style Design of Experiments (DOE) with eight factors was used to optimize exterior mirrors for wind noise and drag. Eighteen mirror properties were constructed and tested on a full size greenhouse buck at the Lockheed low-speed wind tunnel in Marietta, GA. Buck interior sound data and drag measurements were taken at 80 MPH wind speed (0° yaw angle). Key wind noise parameters were the fore/aft length of mirror housing and the plan view angle of the mirror housing's inboard surface. Key drag parameters were the fore/aft length of the mirror housing, the cross-section shape of the mirror pedestal, and the angle of the pedestal (relative to the wind).
Technical Paper

The Ford Motor Company Spin-Torsional NVH Test Facility-2

2003-05-05
2003-01-1684
The Ford Spin Torsional NVH TEST Facility developed and completed in 1999 as a state-of-the-art powertrain NVH development facility(1). Since then, various designed capabilities have been verified with test vehicles for multiple applications to facilitate powertrain NVH development. This paper describes fundamental capabilities of the test facility, including input module to simulate engine torque signatures of arbitrary engines (“virtual engine” capability) and absorbing dynamometer systems, functioning as a precision 4WD/AWD chassis dynamometer. The correlation between road test/chassis dynamometer test and Spin-Torsional test is then illustrated, verifying high correlation of vehicle/sub-system responses between conventional vehicle testing and Spin-Torsional test results.
Technical Paper

The Ford Motor Company Transmission NVH Test Cell

2003-05-05
2003-01-1681
Effectively managing transmission noise, vibration and harshness (NVH) has become increasingly important for maximizing customer satisfaction and fostering the perception of quality in contemporary cars and trucks. As overall vehicle and engine masking levels have dramatically decreased in recent times, low level tonal noises generated by transmission internals have gained significance and therefore have a greater effect on the NVH performance of vehicles. Recognizing the importance of this trend, Ford Motor Company recently designed and built a state-of-the-art research and development facility to be used for reducing noise and vibration generated by automatic and manual vehicle transmissions. The significant design features and validation results of this facility are described in this paper.
Technical Paper

Global Acoustic Sensitivity Analysis Applied to the Reduction of Shell Noise Radiation of a Simulated Engine Air Induction System Component

1998-02-23
980280
Global acoustic sensitivity analysis [1] is a technique used to identify structural modifications to a component that can reduce the total radiated power of a vibrating structure or the sound pressure levels at specified field points. This report describes the use of global sensitivity analysis within SYSNOISE to determine what structural changes are required to reduce radiated noise from flexible structures in an open duct system. The technique can help optimize design parameters that define the behavior of a flexible structure such as shell thickness and Young's Modulus. The sensitivity analysis approach consists of separately evaluating structural and acoustic sensitivities. A structural finite element model (FEM) of an open duct system is used to compute the sensitivity of the structural response to changes in thickness. A boundary element model (BEM) is then used to relate changes in the calculated acoustic response to changes in the structural design variables.
Technical Paper

Artificial Reduction of Wind Tunnel Background Noise in Vehicle Wind Noise Testing

1998-02-23
980390
Vehicle wind noise testing is usually done at elaborate tunnel facilities with minimal tunnel background noise, Techniques to reduce the tunnel noise, such as acoustic panels or improved fan systems, translate into higher costs for wind noise testing. We introduce an innovative procedure using an adaptive filtering algorithm to separate the tunnel noise from the wind noise inside the cabin of the vehicle. This new technique is capable of artificially reducing the tunnel background noise at low frequencies. Such a procedure has the potential to dramatically improve the wind noise testing capability of any wind tunnel, without the need for costly acoustic treatments.
Technical Paper

Valvetrain Ticking Noise Analysis

2017-03-28
2017-01-1057
Valvetrain ticking noise is one of the key failure modes in noise vibration harshness (NVH) evaluation at idle. It affects customer satisfaction inversely. In this paper, the root cause of the valvetrain ticking noise and key parameters that impact ticking noise will be presented. A physics based math model has been developed and integrated into a parameterized multi-body dynamic model. The analytical prediction has been correlated with testing data. Valvetrain ticking noise control is discussed.
Technical Paper

Characterization of Crankcase Pressure Variation during the Engine Cycle of an Internal Combustion Engine

2017-03-28
2017-01-1088
High frequency variations in crankcase pressure have been observed in Inline-four cylinder (I4) engines and an understanding of the causes, frequency and magnitude of these variations is helpful in the design and effective operation of various engine systems. This paper shows through a review and explanation of the physics related to engine operation followed by comparison to measured vehicle data, the relationship between crankcase volume throughout the engine cycle and the observed pressure fluctuations. It is demonstrated that for a known or proposed engine design, through knowledge of the key engine design parameters, the frequency and amplitude of the cyclic variation in crankcase pressure can be predicted and thus utilized in the design of other engine systems.
Technical Paper

CAE Simulation of Engine Oil Pump Tonal Noise: Design Modifications and Countermeasures

2017-03-28
2017-01-1076
In this presentation, two cases of CAE simulations of oil pump-induced tonal noises are presented. The first case involves oil pump-induced whine in an I4engine during coast down. The second case addresses oil pan moan during hot idle and the effect of oil pump pick-up tube positioning inside the oil pan of an I5 engine. The investigations include several design modifications to the pump and the pick-up tube to prevent the tonal noise. Test data are also included to demonstrate the accuracy of the CAE simulation.
Technical Paper

CAE Predictions for Cardan Joint Induced Driveline NVH

2017-03-28
2017-01-1136
Automotive vehicles equipped with Cardan joints may experience low frequency vehicle launch shudder vibration (5-30Hz) and high frequency driveline moan vibration (80-200Hz) under working angles and speeds. The Cardan joint introduces a 2nd order driveshaft speed variation and a 4th order joint articulation torque (JAT) causing the vehicle shudder and moan NVH issues. Research on the Cardan joint induced low frequency vehicle shudder using a Multi-Body System (MBS) method has been attempted. A comprehensive MBS method to predict Cardan joint induced high frequency driveline moan vibration is yet to be developed. This paper presents a hybrid MBS and Finite Element Analysis (FEA) approach to predict Cardan joint induced high frequency driveshaft moan vibration. The CAE method considers the elastically coupled driveshaft bending and engine block vibration due to Cardan joint excitation.
Technical Paper

Ting Noise Generation in Automotive Applications

2017-03-28
2017-01-1121
Automobile customers are looking for higher performance and quieter comfortable rides. The driveline of a vehicle can be a substantial source of NVH issues. This paper provides an understanding of a driveline noise issue which can affect any variant of driveline architecture (FWD, AWD, RWD and 4X4). This metallic noise is mostly present during the take-off and appropriately termed as ting noise. This noise was not prevalent in the past. For higher fuel economy, OEMs started integrating several components for lighter subsystems. This in effect made the system more sensitive to the excitation. At present the issue is addressed by adding a ting washer in the interface of the wheel hub bearings and the halfshafts. This paper explains the physics behind the excitation and defines the parameters that influence the excitation. The halfshaft and the wheel hub are assembled with a specified hub nut torque.
Technical Paper

Factors Influencing Liquid over Air Cooling of High Voltage Battery Packs in an Electrified Vehicle

2017-03-28
2017-01-1171
Automotive vehicle manufactures are implementing electrification technologies in many vehicle line-ups to improve fuel economy and meet emission standards. As a part of electrification, High Voltage (HV) battery packs are integrated alongside internal combustion engines. Recent generation HV batteries allow extensive power usage, by allowing greater charge and discharge currents and broader State of Charge (SOC) ranges. Heat generated during the charge-discharge cycles must be managed effectively to maintain battery cell performance and life. This situation requires a cooling system with higher efficiency than earlier generation electrified powertrains. There are multiple thermal solutions for cooling HV battery packs including forced air, liquid, direct refrigerant, and passive cooling. The most common types of HV battery pack cooling, for production vehicles, are air cooled using cabin interior air and liquid cooled using powertrain cooling systems.
X