Refine Your Search


Search Results

Technical Paper

Air Charge Estimation in Camless Engines

An electromechanically driven valve train offers unprecedented flexibility to optimize engine operation for each speed load point individually. One of the main benefits is the increased fuel economy resulting from unthrottled operation. The absence of a restriction at the entrance of the intake manifold leads to wave propagation in the intake system and makes a direct measurement of air flow with a hot wire air meter unreliable. To deliver the right amount of fuel for a desired air-fuel ratio, we therefore need an open loop estimate of the air flow based on measureable or commanded signals or quantities. This paper investigates various expressions for air charge in camless engines based on quasi-static assumptions for heat transfer and pressure.
Technical Paper

Closed-Loop Air-Fuel Ratio Control Using Forced Air-Fuel Ratio Modulation

An air-to-fuel ratio (A/F) modulation scheme is presented in which a linear feedback signal is generated from a heated exhaust gas oxygen (EGO) sensor. In this scheme, the engine A/F is modulated with a triangular waveform, and the mean value of the EGO output is obtained using a rolling average filter. The resulting output is linearly related to the exhaust A/F, and is used to provide closed-loop lean A/F operation following a cold start to enhance catalyst light-off and minimize vehicle exhaust emissions. Some engine-dynamometer results obtained using the method are presented.
Technical Paper

Parametric Simulation of Significant Design and Operating Alternatives Affecting the Fuel Economy and Emissions of Spark-Ignited Engines

A fundamental thermodynamic model of the complete spark-ignited, homogeneous charge engine cycle has been used in several parametric analyses to predict the effects of engine design and operating alternatives on fuel consumption and emissions of NOx and unburned hydrocarbons (HC). The simulation includes sub-models for wall heat transfer, NOx and HC emissions, and the engine breathing processes. This work demonstrates the power and utility of a comprehensive engine simulation by presenting several independent parametric studies that were carried out in response to genuine engine design and/or operating strategy questions. Included in this compilation are the effects of cycle heat loss, exhaust port heat loss, combustion duration, and charge dilution (EGR and/or lean air-fuel ratio). In addition, the influence of the design variables associated with bore-stroke ratio, intake and exhaust valve lift, and cam timing are considered.
Technical Paper

Comparison of Emission Indexes within a Turbine Combustor Operated on Diesel Fuel or Methanol

The emission index (grams of species per kilogram of fuel) field within a regenerative turbine combustor has been mapped using a water-cooled sampling probe. The probe employed a choked orifice to simultaneously determine the local temperature. Derived from measurements are: air-fuel ratio, combustion efficiency, average fuel velocity and fuel distribution factor. Methods of averaging the discrete data are developed. A comparison of the data obtained when the combustor was operated on each of two fuels revealed that the use of methanol leads to lower nitric oxide but higher carbon monoxide emission than does the use of diesel fuel.
Technical Paper

Three-Way Catalyst Diagnostics and Prognostics Based on Support Vector Machines

A three-way catalytic converter (TWC) is an emissions control device, used to treat the exhaust gases in a gasoline engine. The conversion efficiency of the catalyst, however, drops with age or customer usage and needs to be monitored on-line to meet the on board diagnostics (OBD II) regulations. In this work, a non-intrusive catalyst monitor is developed to diagnose the track the remaining useful life of the catalyst based on measured in-vehicle signals. Using air mass and the air-fuel ratio (A/F) at the front (upstream) and rear (downstream) of the catalyst, the catalyst oxygen storage capacity is estimated. The catalyst capacity and operating exhaust temperature are used as an input features for developing a Support Vector Machine (SVM) algorithm based classifier to identify a threshold catalyst. In addition, the distance of the data points in hyperspace from the calibrated threshold plane is used to compute the remaining useful life left.
Technical Paper

Ion Current Measurement of Diluted Combustion Using a Multi-Electrode Spark Plug

Close-loop feedback combustion control is essential for improving the internal combustion engines to meet the rigorous fuel efficiency demands and emission legislations. A vital part is the combustion sensing technology that diagnoses in-cylinder combustion information promptly, such as using cylinder pressure sensor and ion current measurement. The promptness and fidelity of the diagnostic are particularly important to the potential success of using intra-cycle control for abnormal cycles such as super knocking and misfiring. Many research studies have demonstrated the use of ion-current sensing as feedback signal to control the spark ignition gasoline engines, with the spark gap shared for both ignition and ion-current detection. During the spark glow phase, the sparking current may affect the combustion ion current signal. Moreover, the electrode gap size is optimized for sparking rather than measurement of ion current.
Technical Paper

Correlation of Air Fuel Ratio with Ionization Signal Metrics in a Multicylinder Spark Ignited Engine

Accurate individual cylinder Air Fuel Ratio (AFR) feedback provide opportunities for improved engine performance and reduced emissions in spark ignition engines. One potential measurement for individual cylinder AFR is in-cylinder ionization measured by employing the spark plug as a sensor. A number of previous investigations have studied correlations of the ionization signal with AFR and shown promising results. However the studies have typically been limited to single cylinders under restricted operating conditions. This investigation analyzes and characterizes the ionization signals in correlation to individual AFR values obtained from wide-band electrochemical oxygen sensors located in the exhaust runners of each cylinder. Experimental studies for this research were conducted on a 2.0L inline 4 cylinder spark ignited engine with dual independent variable cam phasing and an intake charge motion control valve.
Technical Paper

Carbureted SI Engine Air Flow Measurements

Measurement of internal combustion engine air flow is challenging due to the required modification of the intake system and subsequent change in the air flow pattern. In this paper, various surge tank volumes were investigated to improve the accuracy of measuring air flow rate into a 674-cm3, four-stroke, liquid-cooled, internal combustion engine. According to the experimental results, when the venturi meter is used to measure the intake air flow rate, an air surge tank is required to be installed downstream of the venturi to smoothen the air flow. Moreover, test results revealed that increasing air surge tank volume beyond a limit could have a negative effect on the engine performance parameters especially in carbureted engines where controlling AFR is difficult. Although the air flow rate into the engine changed with increasing tank volume, the air-fuel ratio was leaner for smaller tank volumes.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - AFR and EGR Dilution Effects

The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and reduce harmful emissions while maintaining durability. Transforming part of the vehicle fleet to NG is a path to reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Nozzle Included Angle Effects

The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
Technical Paper

Air Charge and Residual Gas Fraction Estimation for a Spark-Ignition Engine Using In-Cylinder Pressure

An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
Technical Paper

Reducing Catalyst Zone Flow for Robust Emissions Performance in the Presence of Engine Air Fuel Ratio Imbalance

In recent years, the EPA has implemented a requirement for monitoring the air fuel ratio balance in multi-cylinder engines such that those imbalances may not be so great as to cause the tailpipe emissions level to exceed 1.5 times the nominal emissions standard. Such imbalances may be the result of production fuel injector variation, contamination, leaks, or other malfunctions which cause the air or fuel rate to vary across the cylinders controlled by a single oxygen sensor. For many diagnostic systems that rely on the signal from the oxygen sensor, to achieve compliance to the new diagnostic standard, the sensor must see the signal from each cylinder equally. The aftertreatment system must also be robust to individual cylinder air fuel ratio variation. This paper introduces the concept of catalyst zone flow, a condition in which different cylinders of a multi-cylinder engine use different portions of the catalyst brick.
Technical Paper

Air-Fuel Ratio Dependence of Random and Deterministic Cyclic Variability in a Spark-Ignited Engine

One important design goal for spark-ignited engines is to minimize cyclic variability. A small amount of cyclic variability (slow burns) can produce undesirable engine vibrations. A larger amount of cyclic variability (incomplete burns) leads to increased hydrocarbon consumption/emissions. Recent studies have reported deterministic patterns in cyclic variability under extremely lean (misfiring) operating conditions. The present work is directed toward more realistic non-misfiring conditions. Production engine test results suggest that deterministic patterns in cyclic variability are the consequence of incomplete combustion, hence control algorithms based on the occurrence of these patterns are not expected to be of significant practical value.
Technical Paper

Improved Three-Way Catalyst Performance Using an Active Bias Control Regeneration System

A method for improving three-way catalyst (TWC) performance by superimposing a low frequency lean air-to-fuel ratio (AFR)bias perturbation onto the standard AFR oscillations is described. This observation of Catalyst Regeneration (CatRegen) has been attributed to a reactivation of poisoned precious metal sites on the catalyst surface. Preliminary tests under steady-state conditions show that there is a gradual reduction in TWC activity for NOx after a lean-rich transition, suggesting a temporary poisoning of the active precious metal sites on the TWC under rich conditions. This deactivation can be prevented by periodically exposing the catalyst to lean exhaust gas; which has led to the development of the CatRegen system.
Technical Paper

An Artificial UEGO Sensor for Engine Cold Start - Methodology, Design, and Performance

The AFR control accuracy in the cold start is crucial to lowering emissions from IC-engine vehicles. An artificial UEGO “sensor” for estimating the real-time AFR during the engine cold start has been developed on the basis of a fuel-perturbation algorithm at Ford Scientific Research Labs. The AFR values calculated by the artificial UEGO sensor have been used in the closed-loop fuel control. Considering that the engine cold start AFR is an uncertain, non-linear problem, some other techniques for optimizing the input stimulation signal and the output-filtering model are integrated together with the fuel perturbation. This artificial sensor was realized and its performance was tested on a Ford vehicle for EPA75 cold 505 test. The assessment of the artificial sensor was quite different in comparison with that of a real UEGO sensor.
Technical Paper

Particulate Matter and Hydrocarbon Emissions Measurements: Comparing First and Second Generation DISI with PFI in Single Cylinder Optical Engines

A Spray Guided Direct Injection (SGDI) engine has been shown to emit less Particulate Matter (PM) than a first generation (wall guided) Direct Injection Spark Ignition (DISI) engine. The reduction is attributed to the reduced incidence of fuel-wall impingement and higher fuel injection pressure. The extent to which this is true was investigated by comparison between single cylinder SGDI and DISI engines. Both engines were also operated with conventional port injection to provide a baseline. Feedgas PM number concentration and size spectra were measured using a Cambustion differential mobility spectrometer for the fuels iso-octane and toluene with a range of Air-Fuel Ratios (AFRs), ignition and injection timings.
Technical Paper

Modeling and Laboratory Studies for DeSOx Characteristics of LNT

An analytical model was developed to simulate both sulfur adsorption and desorption characteristics based on the laboratory determined parameters. Diesel Lean NOx Trap (LNT) was tested under laboratory conditions to examine desulfation (deSOx) characteristics. Effects of different Lean/Rich (L/R) cycling of Air-Fuel ratio during the deSOx mode were investigated. The gradient of adsorbed sulfur along the axial direction of the sample LNT was also examined. The gradient of sulfur deposit, together with different L/R cycling combinations for the deSOx mode was critical to develop the efficient sulfur removal strategies. The model considered energy and mass balances during sulfur adsorption and desorption modes to predict the catalyst temperature and the amount of sulfur adsorbed and removed. HC and CO oxidation reactions as well as the oxygen storage were considered to estimate heat generated by the exothermic reactions.
Technical Paper

Development of a New Oxygen Storage Model for SIMTWC

The high conversion efficiency required by the modern three-way catalyst (TWC) is dependent on oxygen storage material functionality and capacity. To successfully model a TWC, it is critical that the oxygen storage function in the catalyst be adequately represented. The original oxygen storage model (a simple “bucket” model) included in one of Ford's TWC models, SIMTWC, was developed for vehicle programs meeting LEV emission standards. Application of SIMTWC to test data from vehicles targeting more stringent emission standards, such as ULEV and PZEV, revealed limitations in the accuracy of the original bucket model. To address these limitations, an improved kinetic model of oxygen storage is being developed. This new model is more kinetically-detailed than the old model.
Technical Paper

An Adaptive Delay-Compensated PID Air Fuel Ratio Controller

In this work, a discrete,time-based, delay-compensated, adaptive PID control algorithm for air fuel ratio control in an SI engine is presented. The controller operates using feedback from a wide-ranging Universal Exhaust Gas Oxygen (UEGO) sensor situated in the exhaust manifold. Time delay compensation is used to address the difficulties traditionally associated with the relatively long and time-varying time delay in the gas transport process and UEGO sensor response. The delay compensation is performed by computing a correction to the current control move based on the current delay and the corresponding values of the past control moves. The current delay is determined from the measured engine speed and load using a two dimensional map. In order to achieve good servo operation during target changes without compromising regulator performance a two degree of freedom controller design has been developed by adding a pre-filter to the air fuel ratio target.
Technical Paper

A Phenomenological Control Oriented Lean NOx Trap Model

Lean NOx Trap (LNT) is an aftertreatment device typically used to reduce oxides of nitrogen (NOx) emissions for a lean burn engine. NOx is stored in the LNT during the lean operation of an engine. When the air-fuel ratio becomes rich, the stored NOx is released and catalytically reduced by the reductants such as CO, H2 and HC. Tailpipe NOx emissions can be significantly reduced by properly modulating the lean (storage) and rich (purge) periods. A control-oriented lumped parameter model is presented in this paper. The model captures the key steady state and transient characteristics of an LNT and includes the effects of the important engine operating parameters. The model can be used for system performance evaluation and control strategy development.