Refine Your Search



Search Results

Technical Paper

Effect of Epoxy-Based Structural Foam on Energy Management: An Experimental & Analytical Investigation

The effect of epoxy-based structural foam on strength, stiffness, and energy absorption of foam filled structural components is investigated and implemented to formulate design guide-lines that can be used in enhancing weight reduction and engineering functions of systems. An experimental approach is first utilized to identify design variables such as foam density, gage, and foam layer thickness, that are needed to enhance the weight/ performance ratio of structural hat-section components. A CAE approach using non-linear, large deformation finite element analysis is used to model the hat-section components. An acceptance level of confidence in the CAE analytical tools is then established based on comparisons of results between the two approaches. Upon that, the CAE analytical tools are deployed in a sensitivity study to quantify the crush/crash characteristics of foam-filled hat-section components with respect to the changes in the afore mentioned design variables.
Technical Paper

An Assessment of a FEA NVH CAE Body Model for Design Capability

Finite Element Analysis (FEA) models are routinely being adopted as a means of up-front design for automotive body structure design. FEA models play two important functions: first as a means of assessing design versus an absolute target; secondly they are used to assess the performance of design alternatives required to meet targets. Means of assessing model capability versus task is required to feed appropriate information into the design process. Being able to document model capability improves the credibility of the FEA model information. A prior paper addressed assessing the absolute performance of model technology using a metric based on a statistical hypotheses test that determines membership in a reference set. This paper extends the use of quality technology to determining the capability of the FEA model to span the design space using Designed Experiments.
Technical Paper

Local-Global Finite-Element Analysis for Cam Cover Noise Reduction

Valve covers are a primary source of radiated engine noise. In this paper, we discuss an analytical approach that captures the complicated nonlinear response of the cam cover gaskets and grommets without the need for a prohibitively large finite-element model of the cam cover system. We utilize a detailed local analysis of the gasket and grommet components and abstract their isolation characteristics for later use in a global NVH (Noise-Vibration-Harshness) system analysis.
Technical Paper

Use of Polyurethane Material Models for Simulating Leg-Form Impact in Different Explicit Finite Element Codes

Compressible plastic foams are used throughout the interior and bumper systems of modern automobiles for safety enhancement and damage prevention. Consequently, modeling of foams has become very important for automobile engineers. To date, most work has focused on predicting foam performance up to approximately 80% compression. However, in certain cases, it is important to predict the foam under maximum compression, or ‘bottoming-out.’ This paper uses one such case-a thin low-density bumper foam impacted by a pedestrian leg-form at 11.1 m/s-to investigate the ‘bottoming-out’ phenomenon. Multiple material models in three different explicit Finite Element Method (FEM) packages (RADIOSS, FCRASH, and LS-DYNA) were used to predict the performance. The finite element models consisted of a foam covered leg-form impacting a fixed bumper beam with a foam energy absorber.
Technical Paper

Global Acoustic Sensitivity Analysis Applied to the Reduction of Shell Noise Radiation of a Simulated Engine Air Induction System Component

Global acoustic sensitivity analysis [1] is a technique used to identify structural modifications to a component that can reduce the total radiated power of a vibrating structure or the sound pressure levels at specified field points. This report describes the use of global sensitivity analysis within SYSNOISE to determine what structural changes are required to reduce radiated noise from flexible structures in an open duct system. The technique can help optimize design parameters that define the behavior of a flexible structure such as shell thickness and Young's Modulus. The sensitivity analysis approach consists of separately evaluating structural and acoustic sensitivities. A structural finite element model (FEM) of an open duct system is used to compute the sensitivity of the structural response to changes in thickness. A boundary element model (BEM) is then used to relate changes in the calculated acoustic response to changes in the structural design variables.
Technical Paper

Integration of Chassis Frame Forming Analysis into Performance Models to More Accurately Evaluate Crashworthiness

For Body on Frame vehicles, the chassis truck frame absorbs approximately 70% of the kinetic energy created from a frontal impact. Traditional performance analysis of the chassis utilizes standardized material properties for the Finite Element (FE) Model. These steel properties do not reflect any strain hardening effects that occur during the forming process. This paper proposes a process that integrates the frame side rail forming analysis results into the FE crash model. The process was implemented on one platform at Ford Motor Company to quantify the effects. The forming analysis provided material thinout, yield strength, and tensile strength which were input into the performance model. With the modified properties, the frame deceleration pulse and buckling mode exhibited different characteristics. The integration of CAE disciplines is the next step in increasing the predictability of analytical tools.
Technical Paper

Light Truck Stabilizer Bar Attachment Non-linear Fatigue Analysis

The stabilizer bar attachments problem can not be simply analyzed by using linear FEA methodology. The large deformation in the bushing, the elastic-plastic material property in the bushing retainer bracket, and the contact between different parts all add complexity to the problem and result in the need for an analysis method using a non-linear code, such as ABAQUS. The material properties of the bushing were experimentally determined and applied to the CAE model. It was found that using strains to estimate the fatigue life was more accurate and reliable than using stress. Many modeling techniques used in this analysis were able to improve analysis efficiency.
Technical Paper

Non-Linear Finite Element Analysis of Valve Seats and Valve Guides Assembly in Engine Cylinder Head

In the shop floor, cracking issue was noticed during assembly of valve seat and valve guide in the engine cylinder head, especially near the valve seating area. This paper reveals a non- linear finite element methodology to verify the structural integrity of a cylinder head during valve seat and valve guide assembly press-in operation under the maximum material condition, i.e., smallest hole size on cylinder head for valve seat and guide and largest diameter of valve seat and guide. Material and geometrical nonlinearities, and contact are included in this method to replicate the actual seat and guide press-in operation which is being carried out in shop floor. The press-in force required for each valve seat and valve guide assembly is extracted from simulation results to find out the tonnage capacity of pressing machine for cylinder head assembly line. Stress and plastic deformation due to assembly load are the criteria checked against the respective material yield.
Technical Paper

CAE Predictions for Cardan Joint Induced Driveline NVH

Automotive vehicles equipped with Cardan joints may experience low frequency vehicle launch shudder vibration (5-30Hz) and high frequency driveline moan vibration (80-200Hz) under working angles and speeds. The Cardan joint introduces a 2nd order driveshaft speed variation and a 4th order joint articulation torque (JAT) causing the vehicle shudder and moan NVH issues. Research on the Cardan joint induced low frequency vehicle shudder using a Multi-Body System (MBS) method has been attempted. A comprehensive MBS method to predict Cardan joint induced high frequency driveline moan vibration is yet to be developed. This paper presents a hybrid MBS and Finite Element Analysis (FEA) approach to predict Cardan joint induced high frequency driveshaft moan vibration. The CAE method considers the elastically coupled driveshaft bending and engine block vibration due to Cardan joint excitation.
Technical Paper

Pedestrian Head Impact Time Estimate based on Vehicle Geometric Parameters

Pedestrian protection assessment methods require multiple head impact tests on a vehicle’s hood and other front end parts. Hood surfaces are often lifted up by using pyrotechnic devices to create more deformation space prior to pedestrian head impact. Assessment methods for vehicles equipped with pyrotechnic devices must also validate that the hood deployment occurs prior to head impact event. Estimation of pedestrian head impact time, thus, becomes a critical requirement for performance validation of deployable hood systems. In absence of standardized physical pedestrian models, Euro NCAP recommends a list of virtual pedestrian models that could be used by vehicle manufacturers, with vehicle FEA (Finite Element Analysis) models, to predict the potential head impact time along the vehicle front end profile. FEA simulated contact time is used as target for performance validation of sensor and pyrotechnic deployable systems.
Technical Paper

The Finite Element Analysis of Axle Nut Crimping

In the assembly of axles and wheel hubs, a nut is frequently used to fasten them as one unit. In order for the nut to hold the assembly in its final position, crimping is a widely-used method which prevents nut from loosening. A reliable crimping process not only prevents movement of the nut during axle operation but should also minimize the possibility of cracking the rim. If the nut cracks during assembly, it can start to rust and deteriorate. The service life span of the axle assembly hence shortens as a result. The quality of crimping operation is determined by the component designs, the process parameters, and the crimping tool geometry. It would be time-consuming and costly to evaluate these factors empirically; let alone the requirement of prototypes in the early stage of a new program. A dynamic finite element methodology which adopts the Arbitrary Lagrangian-Eulerian formulation from ABAQUS explicit solver is developed to simulate the complete crimping process.
Technical Paper

Acetabulum Injury Investigation of Proposed US-NCAP in OI Mode

In December 2015, the National Highway Traffic Safety Administration (NHTSA) published a Request for Comments on proposed changes to the New Car Assessment Program (NCAP). One potential change is the addition of a frontal oblique impact (OI) crash test using the Test Device for Human Occupant Restraint (THOR). The resultant acetabulum force, which is a unique and specifically defined in the THOR dummy, will be considered as a new injury metric. In this study, the results of ten OI tests conducted by NHTSA on current production mid-sized vehicles were investigated. Specifically, the test data was used to study the lower extremity kinematics for the driver and front passenger THOR dummies. It was found that the acetabulum force patterns varied between the driver and passenger and between the left leg and the right leg of the occupants. The maximum acetabulum force can occur either on the left side or right side of a driver or a front passenger in an OI event.
Technical Paper

CAD, CAD/CAM, CAE and Integrated Systems - an Overview

The development of numerical control, interactive computer graphics and finite element analysis has spawned an overabundance of new acronyms to describe the application of computers in the engineering and manufacturing environment. The purpose of this paper is to provide an overview of these technologies and describe how greater productivity improvement can be achieved via the synergistic benefits of integrating these diverse systems. Discussions will be based largely on the Ford Motor engineering and manufacturing environment which includes not only the internally developed Ford graphics systems, but systems provided by every major turn-key graphics vendor. Evaluation of the Initial Graphics Exchange Specification (IGES) and communication of computer graphics data to Ford suppliers will also be discussed.
Technical Paper

Aerostar Powertrain and Chassis Isolation Technology

The unitized construction Aerostar compact van and wagon models have been engineered to meet a variety of consumer transportation needs. The broad range of functional and image objectives have been attained by traditional design and development programs augmented by new developmental methods and isolation components. State-of-the-art development methodologies applied early in the Aerostar program enabled prediction of the effects of design revisions intended to improve subsystem response characteristics and isolation. Developmental methods used included finite element analysis, modal analysis and synthesis, transmissibility measurements, torsional powertrain measurements, continuous wave laser holography, acoustical mode determination, acoustical intensity mapping and sensitivity studies used to project production ranges of quality.
Technical Paper

Aerostar Aluminum Driveshaft

This paper summarizes the design features of the Aerostar aluminum driveshaft and the analytical techniques used in its development. The Aerostar aluminum driveshaft was designed for lightweight and smooth operation. The aluminum driveshaft uses magnetic impulse metal forming to attach the tube yokes to the tube. This process does not produce a significant amount of heat preserving tube's mechanical properties. Computer aided design techniques were used to optimize the design of driveshaft components and driveline geometry. Finite element analysis was used to refine the tube yoke design for minimum weight within the torque requirement. Finite element analysis was also used to determine resonant frequencies of the powertrain.
Technical Paper

Mid-Frequency Prediction Accuracy Improvement for Fully Trimmed Vehicle using Hybrid SEA-FEA Technique

The concept of using the capabilities of Statistical Energy Analysis (SEA) as the basis for a hybrid technique together with Finite Element Analysis (FEA) or measurements to make acoustic and vibration predictions for the mid-frequency range has been previously established. With advancements in computer memory and speed, FEA calculations such as drive-point mobility and mode counts can now be obtained for some vehicle components or assemblies up to 1000 Hz. This allows for a larger mid-frequency range to be modeled with a hybrid SEA-FEA model when the system is not suitable for modeling with either pure SEA or pure FEA. This can enable a big improvement of the speed and accuracy of a structural-acoustic prediction in the mid-frequency range and can be the best possible analytical prediction in this frequency range when hardware and measured data are not available or testing is to be reduced.
Technical Paper

A Finite Element and Experimental Analysis of a Light Truck Leaf Spring System Subjected to Pre-Tension and Twist Loads

In this study the finite element method is used to simulate a light truck multi-leaf spring system and its interaction with a driven axle, u-bolts, and interface brackets. In the first part of the study, a detailed 3-D FE model is statically loaded by fastener pre-tension to determine stress, strain, and contact pressure. The FE results are then compared and correlated to both strain gage and interface pressure measurements from vehicle hardware test. Irregular contact conditions between the axle seat and leaf spring are investigated using a design of experiments (DOE) approach for both convex and discrete step geometries. In the second part of the study, the system FE model is loaded by both fastener pre-tension and external wheel end loads in order to obtain the twist motion response. Torsional deflection, slip onset, and subsequent slip motion at the critical contact plane are calculated as a function of external load over a range of Coulomb friction coefficients.
Technical Paper

Optimization of High-Volume Warm Forming for Lightweight Sheet

Traditional warm forming of aluminum refers to sheet forming in the temperature range of 200°C to 350°C using heated, matched die sets similar to conventional stamping. While the benefits of this process can include design freedom, improved dimensional capability and potentially reduced cycle times, the process is complex and requires expensive, heated dies. The objective of this work was to develop a warm forming process that both retains the benefits of traditional warm forming while allowing for the use of lower-cost tooling. Enhanced formability characteristics of aluminum sheet have been observed when there is a prescribed temperature difference between the die and the sheet; often referred to as a non-isothermal condition. This work, which was supported by the USCAR-AMD initiative, demonstrated the benefits of the non-isothermal warm forming approach on a full-scale door inner panel. Finite element analysis was used to guide the design of the die face and blank shape.
Technical Paper

Use of Statistical Energy Analysis in Vehicle NVH Design Cycle

Statistical Energy Analysis (SEA) is used to predict high-frequency acoustic and vibration response in vehicle NVH design. Early in the design cycle prototype hardware is not yet available for testing and the geometry is still too poorly defined and changing too quickly for Finite Element Analysis or Boundary Element Analysis to be an effective NVH analysis tool. For most of the concept phase and early design phase, SEA uniquely offers the ability to virtually predict the main noise transfer paths and to support target setting for component and full vehicle NVH design. At later stages of the design process, SEA combines with NVH testing to provide more accurate predictions and to provide guidance for more efficient testing. This paper describes the established uses of SEA in the vehicle industry and presents an overview of the NVH design cycle and how SEA is used to support NVH development at different stages.
Technical Paper

Statistical Energy Analysis Applications for Structureborne Vehicle NVH

Statistical Energy Analysis (SEA) is an established high-frequency analysis technique for generating acoustic and vibration response predictions in the automotive, aerospace, machinery, and ship industries. SEA offers unique NVH prediction and target-setting capabilities as a design tool at early stages of vehicle design where geometry is still undefined and evolving and no prototype hardware is available yet for testing. The exact frequencies at which SEA can be used effectively vary according to the size and the amount of damping in the vehicle subsystems; however, for automotive design the ability to predict acoustic and vibration responses due to both airborne and structure-borne sources has been established to frequencies of 500 Hz and above. This paper presents the background, historical use, and current industrial applications of structure-borne SEA. The history and motivation for the development of structure-borne SEA are discussed.