Refine Your Search

Topic

Author

Search Results

Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

2009-06-15
2009-01-1939
EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Journal Article

A Semi-Empirical Model for Predicting Pressure Drops of Fouled EGR Coolers

2010-10-05
2010-01-1948
The performance of an EGR cooler is influenced significantly by particulate fouling in the cooler. As a result of fouling, a highly porous soot deposit layer is formed in the EGR cooler. This deposit layer not only causes a decrease in the cooler effectiveness but also an increase in the EGR pressure drop over the cooler. Increasing the EGR cooler pressure drop reduces the driving force for the EGR flow under a given differential pressure across the engine. Thus, the EGR cooler fouling has a big impact on the control of the engine-out NO emissions. In this paper, a semi-empirical model is developed for predicting pressure drops of fouled EGR coolers. Based on this model and the particulate fouling model developed previously by the author, the process is analyzed for the pressure drop increase with building up of the soot deposit in an EGR cooler.
Journal Article

Combustion Characteristics of a 3000 Bar Diesel Fuel System on a Single Cylinder Research Engine

2015-09-29
2015-01-2798
Modern diesel systems have come to rely on fuel systems with the capacity for high injection pressures. The benefits of such high pressures include improved tolerance for EGR, reduced emissions and improved performance. Current production fuel systems have typical capacities to 2500 bar, when a decade ago 1800 bar was a typical limit. Following the trend, this paper investigates the effect of rail pressures up to 3000 bar on a 1.5L single cylinder research engine. The injector nozzles tested include two variations in flow rate, the number of holes, and spray cone angle. In addition to fuel rail pressure, the effects of intake swirl, excess-air ratio, EGR, and injection timing are evaluated at speed and load points representative of A100, B100, and C100 test conditions of the U.S. EPA on-highway 13 Mode test cycle.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 2

2016-04-05
2016-01-0186
Exhaust gas recirculation (EGR) coolers are used on diesel engines to reduce peak in-cylinder flame temperatures, leading to less NOx formation during the combustion process. There is an ongoing concern with soot and hydrocarbon fouling inside the cold surface of the cooler. The fouling layer reduces the heat transfer efficiency and causes pressure drop to increase across the cooler. A number of experimental studies have demonstrated that the fouling layer tends to asymptotically approach a critical height, after which the layer growth ceases. One potential explanation for this behavior is the removal mechanism derived by the shear force applied on the soot and hydrocarbon deposit surface. As the deposit layer thickens, shear force applied on the fouling surface increases due to the flow velocity growth. When a critical shear force is applied, deposit particles start to get removed.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 1

2016-04-05
2016-01-0183
Exhaust Gas Recirculation (EGR) coolers are commonly used in diesel and modern gasoline engines to reduce the re-circulated gas temperature. A common problem with the EGR cooler is a reduction of the effectiveness due to the fouling layer primarily caused by thermophoresis, diffusion, and hydrocarbon condensation. Typically, effectiveness decreases rapidly at first, and asymptotically stabilizes over time. There are several hypotheses of this stabilizing phenomenon; one of the possible theories is a deposit removal mechanism. Verifying such a mechanism and finding out the correlation between the removal and stabilization tendency would be a key factor to understand and overcome the problem. Some authors have proposed that the removal is a possible influential factor, while other authors suggest that removal is not a significant factor under realistic conditions.
Journal Article

An EGR Cooler Fouling Model: Experimental Correlation and Model Uses

2017-03-28
2017-01-0535
Thermal effectiveness of Exhaust Gas Recirculation (EGR) coolers used in diesel engines can progressively decrease and stabilize over time due to inner fouling layer of the cooler tubes. Thermophoretic force has been identified as the major cause of diesel exhaust soot fouling, and models are proposed in the literature but improvements in simulation are needed especially for the long-term trend of soot deposition. To describe the fouling stabilization behavior, a removal mechanism is required to account for stabilization of the soot layer. Observations from previous experiments on surrogate circular tubes suggest there are three primary factors to determine removal mechanisms: surface temperature, thickness, and shear velocity. Based on this hypothesis, we developed a 1D CFD fouling model for predicting the thermal effectiveness reduction of real EGR coolers. The model includes the two competing mechanisms mentioned that results in fouling balance.
Journal Article

Influence of Injector Location on Part-Load Performance Characteristics of Natural Gas Direct-Injection in a Spark Ignition Engine

2016-10-17
2016-01-2364
Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of natural gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Journal Article

Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst

2008-10-06
2008-01-2467
Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NOx emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C15 - C25 were deposited and retained in the surrogate tubes.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Journal Article

Experimental Evaluation of Advanced Turbocharger Performance on a Light Duty Diesel Engine

2013-04-08
2013-01-0920
For diesel engines to meet current and future emissions levels, the amount of EGR required to reach these levels has increased dramatically. This increased EGR has posed big challenges for conventional turbocharger technology to meet the higher emissions requirements while maintaining or improving other vehicle attributes, to the extent that some OEMs resort to multiple turbocharger configurations. These configurations can include parallel, series sequential, or parallel - series turbocharger systems, which would inevitably run into other issues, such as cost, packaging, and thermal loss, etc. This study, as part of a U.S. Department of Energy (USDoE) sponsored research program, is focused on the experimental evaluation of the emission and performance of a modern diesel engine with an advanced single stage turbocharger.
Technical Paper

Combustion and Emission Characteristics of SI and HCCI Combustion Fueled with DME and OME

2020-04-14
2020-01-1355
DME has been considered an alternative fuel to diesel fuel with promising benefits because of its high reactivity and volatility. Research shows that an engine fueled with DME will produce zero smoke emissions. However, the storage and the handling of the fuel are underlying difficulties owing to its high vapour pressure (530 kPa @ 20 °C). In lieu, OME1 fuel, a derivate of DME, offers advantages exhibited with DME fuel, all the while being a liquid fuel for engine application. In this work, engine tests are performed to realize the combustion behaviour of DME and OME1 fuel on a single-cylinder research engine with a compression ratio of 9.2:1. The dilution ratio of the mixture is progressively increased in two manners, allowing more air in the cylinder and applying exhaust gas recirculation (EGR). The high reactivity of DME suits the capability to be used in compression ignition combustion whereas OME1 must be supplied with a supplemental spark to initiate the combustion.
Journal Article

A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine

2012-09-10
2012-01-1695
Two oxygenated fuels were evaluated on a single-cylinder diesel engine and compared to three hydrocarbon diesel fuels. The oxygenated fuels included canola biodiesel (canola methyl esters, CME) and CME blended with dibutyl succinate (DBS), both of which are or have the potential to be bio-derived. DBS was added to improve the cold flow properties, but also reduced the cetane number and net heating value of the resulting blend. A 60-40 blend of the two (60% vol CME and 40% vol DBS) provided desirable cold flow benefits while staying above the U.S. minimum cetane number requirement. Contrary to prior vehicle test results and numerous literature reports, single-cylinder engine testing of both CME and the 60-40 blend showed no statistically discernable change in NOx emissions relative to diesel fuel, but only when constant intake oxygen was maintained.
Technical Paper

HD Base Engine Development to Meet Future Emission and Power Density Challenges of a DDI™ Engine

2007-10-30
2007-01-4225
This paper describes development challenges for Heavy-Duty (HD) on-highway Diesel Direct Injection (DDI™) engines to meet the extremely advanced US-EPA 2010 (later named US 2010) emission limits while further increasing power density in combination with competitive engine efficiency. It discusses technologies and solutions for lowest engine-out emissions in combination with most competitive fuel consumption values and excellent dynamic behavior. To achieve these challenging targets, base engine hardware requirements are described. In detail the development of EGR systems, especially the challenges of running high EGR rates over the whole engine speed range also at high load, the dynamic EGR control for transient engine operation to achieve lowest NOx emissions at the smoke limit with excellent load response is discussed. Also the effect of the turbo-machinery on power density and transient engine behavior is shown.
Technical Paper

Computational Optimization of a Split Injection System with EGR and Boost Pressure/Compression Ratio Variations in a Diesel Engine

2007-04-16
2007-01-0168
A previously developed CFD-based optimization tool is utilized to find optimal engine operating conditions with respect to fuel consumption and emissions. The optimization algorithm employed is based on the steepest descent method where an adaptive cost function is minimized along each line search using an effective backtracking strategy. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space. The application of this optimization tool is demonstrated for the Sulzer S20, a central-injection, non-road DI diesel engine. The optimization parameters are the start of injection of the two pulses of a split injection system, the duration of each pulse, the exhaust gas recirculation rate, the boost pressure and the compression ratio.
Technical Paper

Neat Biodiesel Fuel Engine Tests and Preliminary Modelling

2007-04-16
2007-01-0616
Engine performance and emission comparisons were made between the use of 100% soy, Canola and yellow grease derived biodiesel fuels and an ultra-low sulphur diesel fuel in the oxygen deficient regions, i.e. full or high load engine operations. Exhaust gas recirculation (EGR) was extensively applied to initiate low temperature combustion. An intake throttling valve was implemented to increase the differential pressure between the intake and exhaust in order to increase and enhance the EGR. The intake temperature, pressure, and EGR levels were modulated to improve the engine fuel efficiency and exhaust emissions. Furthermore, a preliminary ignition delay correlation under the influence of EGR was developed. Preliminary low temperature combustion modelling of the biodiesel and diesel fuels was also conducted. The research intends to achieve simultaneous reductions of nitrogen oxides and soot emissions in modern production diesel engines when biodiesel is applied.
X