Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Journal Article

Enhanced Heat Transfer Coefficient (HTC) Method to Model Air Quench Process: HTC Patching for More Accurate FEA Temperature Calculation

2016-04-05
2016-01-1383
Air quenching is a common manufacturing process in automotive industry to produce high strength metal component by cooling heated parts rapidly in a short period of time. With the advancement of finite element analysis (FEA) methods, it has been possible to predict thermal residual stress by computer simulation. Previous research has shown that heat transfer coefficient (HTC) for steady air quenching process is time and temperature independent but strongly flow and geometry dependent. These findings lead to the development of enhanced HTC method by performing CFD simulation and extracting HTC information from flow field. The HTC obtained in this fashion is a continuous function over the entire surface. In current part of the research, two patching algorithms are developed to divide entire surface into patches according to HTC profile and each patch is assigned a discrete HTC value.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

An Analysis of the Effects of Ventilation on Burn Patterns Resulting from Passenger Compartment Interior Fires

2020-04-14
2020-01-0923
Vehicle fire investigators often use the existence of burn patterns, along with the amount and location of fire damage, to determine the fire origin and its cause. The purpose of this paper is to study the effects of ventilation location on the interior burn patterns and burn damage of passenger compartment fires. Four similar Ford Fusion vehicles were burned. The fire origin and first material ignited were the same for all four vehicles. In each test, a different door window was down for the duration of the burn test. Each vehicle was allowed to burn until the windshield, back glass, or another window, other than the window used for ventilation, failed, thus changing the ventilation pattern. At that point, the fire was extinguished. Temperatures were measured at various locations in the passenger compartment. Video recordings and still photography were collected at all phases of the study.
Journal Article

Design Considerations for Hydrogen Management System on Ford Hydrogen Fueled E-450 Shuttle Bus

2009-04-20
2009-01-1422
As part of a continuous research and innovation effort, Ford Motor Company has been evaluating hydrogen as an alternative fuel option for vehicles with internal combustion engines since 1997. Ford has recently designed and built an Econoline (E-450) shuttle bus with a 6.8L Triton engine that uses gaseous hydrogen fuel. Safe practices in the production, storage, distribution, and use of hydrogen are essential for the widespread public and commercial acceptance of hydrogen vehicles. Hazards and risks inherent in the application of hydrogen fuel to internal combustion engine vehicles are explained. The development of a Hydrogen Management System (H2MS) to detect hydrogen leaks in the vehicle is discussed, including the evolution of the H2MS design from exploration and quantification of risks, to implementation and validation of a working system on a vehicle. System elements for detection, mitigation, and warning are examined.
Technical Paper

Principal Component Analysis of System Usability Scale for Its Application in Automotive In-Vehicle Information System Development

2020-04-14
2020-01-1200
The System Usability Scale (SUS) is used across industries, to evaluate a product’s ease of use. As the automotive industry increases its digital footprint, the SUS has found its application as a simple and reliable assessment of various in-vehicle human machine interfaces. These evaluations cover a broad scope and it is important to design studies with participant fatigue, study time, and study cost in mind. Reducing the number of items in the SUS questionnaire could save researchers time and resources. The SUS is a ten-item questionnaire that can measure usability and learnability, depending on the system. These ten questions are highly correlated to each other suggesting the SUS score can be determined with fewer items. Thus, the focus of this paper is two-fold: using principal component analysis (PCA) to determine the dimensionality of SUS and using this finding to reduce variables and build a regression equation for SUS scores for in-vehicle human machine interfaces.
Technical Paper

Full Body Car Analysis in the Time and Frequency Domains - Sheet, Spot and Seam Weld Fatigue Benchmark Studies

2020-04-14
2020-01-0195
The fatigue analysis of a full car body requires the sheet metal (sheet fatigue), spot welds (spot weld fatigue) and seam welds (seam weld fatigue) to be thoroughly evaluated for durability. Traditionally this has always been done in the time domain, but recently new frequency domain techniques are able to perform these tasks with numerous advantages. This paper will summarize the frequency domain process and then compare the results and performance against the more usual time domain process.
Technical Paper

Ignition Switch Material Definition to Avoid Hard to Start Issue

2020-01-13
2019-36-0138
Nowadays, develop and launch a new product in the market is hard to every company. When we talk about a launch new vehicle to the customers, this task could be considered more difficult than other products whether imagine how fast the technology should be integrated to vehicle. There are main pillars to be considered in this scenario: low cost, design, innovation, competitiveness and safety. Whereas Brazilian economic scenario, all OEM has to be aware to opportunity to make the product profitable and keep acceptable quality. This combination between low cost and quality could be broken or not distributed equally between the pillars. Based on that, in some cases could have a quality broken that will affect directly the customer. This paper will focus on project to define of the new ignition switch, when the main challenge to achieve the cost reduction target was defined to change a material to electrical terminals.
Technical Paper

Recent Advances in Swelling Resistance of Graphene-Based Rubber Compounds

2020-04-14
2020-01-0769
Recently, graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. This review will focus on the latest studies and recent progress in the swelling resistance of rubber compounds due to the addition of graphene and its derivatives. This work will present the state-of-the-art in this subject area and will highlight the advantages and current limitations of the use of graphene for potential future researches.
Technical Paper

Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface

2007-04-16
2007-01-0649
The interface between a plenum and primary runner in log-style intake manifolds is one of the dominant sources of flow losses in the breathing system of Internal Combustion Engines (ICE). A right-angled T-junction is one such interface between the plenum (main duct) and the primary runner (sidebranch) normal to the plenum's axis. The present study investigates losses associated with the combining flow through these junctions, where fluid from both sides of the plenum enters the primary runner. Steady, incompressible-flow experiments for junctions with circular cross-sections were conducted to determine the effect of (1) runner interface radius of 0, 10, and 20% of the plenum diameter, (2) plenum-to-runner area ratio of 1, 2.124, and 3.117, and (3) runner taper area ratio of 2.124 and 3.117. Mass flow rate in each branch was varied to obtain a distribution of flow ratios, while keeping the total flow rate constant.
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
Technical Paper

Automotive Manufacturing Task Analysis: An Integrated Approach

2008-06-17
2008-01-1897
Automotive manufacturing presents unique challenges for ergonomic analysis. The variety of tasks and frequencies are typically not seen in other industries. Moving these challenges into the realm of digital human modeling poses new challenges and offers the opportunity to create and enhance tools brought over from the traditional reactive approach. Chiang et al. (2006) documented an enhancement to the Siemen's Jack Static Strength Prediction tool. This paper will document further enhancements to the ErgoSolver (formerly known as the Ford Static Strength Prediction Solver).
Technical Paper

End-of-line noise testing for transmission plant

2008-03-30
2008-36-0553
In NVH, the common sense is that quiet vehicles are vehicle which sources of noise are controlled. Transmission whine noise is an example of how is important to avoid unexpected noise coming from a specific component or system to the consumers. This paper is based on Ford's recent experience of researching and measuring to improve the end-of-line noise testing of its transmission manufacturing plant in Brazil. The approach is based on 6Sigma disciplines. There is not emphasis in the academic behaves of noise and vibration, or even the root cause of problems, but basically in the methodology in how to detect transmission noise still in the manufacturing line for immediate action and repair (if necessary) avoiding any issue to the consumer (internal - vehicle assemble line and vehicle buyers).
Technical Paper

Wood-to-Wheels: A Multidisciplinary Research Initiative in Sustainable Transportation Utilizing Fuels and Co-Products from Forest Resources

2008-10-20
2008-21-0026
Michigan Technological University has established a broad-based university-wide research initiative, termed Wood-to-Wheels (W2W), to develop and evaluate improved technologies for growing, harvesting, converting, and using woody biomass in renewable transportation fuel applications. The W2W program bridges the entire biomass development-production-consumption life cycle with research in areas including forest resources, bioprocessing, engine/vehicle systems, and sustainable decisions. The W2W chain establishes a closed cycle of carbon between the atmosphere, woody biomass, fuels, and vehicular systems that can reduce the accumulation of CO2 in the atmosphere. This paper will summarize the activities associated with the Wood-to-Wheels initiative and describe challenges and the potential benefits that are achievable.
Technical Paper

Autonomous Driving - A Practical Roadmap

2010-10-19
2010-01-2335
Successful demonstrations of fully autonomous vehicle operation in controlled situations are leading to increased research investment and activity. This has already resulted in significant advancements in the underlying technologies necessary to make it a practical reality someday. Not only are these idealized events sparking imaginations with the potential benefits for safety, convenience, fuel economy and emissions, they also embolden some to make somewhat surprising and sometimes astonishing projections for their appearance on public roads in the near future. Are we now ready for a giant leap forward to the self-driving car with all its complexity and inter-dependencies? Humans will need to grow with and adapt to the technological advancements of the machine and we'll deeply challenge our social and political paradigms before we're done. Even if we as engineers are ready, is the driving public ready?
Technical Paper

Antiwear Performance of Low Phosphorus Engine Oils on Tappet Inserts in Motored Sliding Valvetrain Test

2003-10-27
2003-01-3119
The overall purpose of this research is to determine the antiwear capability of low phosphorus engine oils containing 0.05 wt% phosphorus. The antiwear performance of 0.05 wt% phosphorus engine oils was evaluated using a laboratory valvetrain bench test rig coupled with an on-line wear measurement technique and a high frequency reciprocating rig (HFRR). Low phosphorus engine oils were compared with GF-3 engine oils containing 0.1 wt% phosphorus. In addition to fresh oils, long drain used oils from fleet vehicles were also analyzed and investigated. This information is important to develop engine oil formulations to meet the latest government emission and fuel economy requirements. The results indicate that by appropriately selecting and balancing supplemental antiwear and/or antioxidation additives the wear loss due to the reduction of zinc dialkyldithiophosphate (ZDDP) may be compensated or even reduced.
Technical Paper

Experimental Modal Analysis on Automotive Development

2003-11-18
2003-01-3610
In the last years, vehicle vibroacoustics has expanded as a basic and applied research area. Structural dynamic methods and technologies have been used with great success by the automotive industry. Experimental modal analysis is the process of determining the modal parameters (modes, frequencies and damping factors) of a linear system. This work presents the modal analysis of the Amazon family cars in full vehicle configuration (drivable units). A full vehicle represents a more complex system when compared to the body only, due to the systems attached to it, increasing its damping and measurable noise, and including coupled local and global modes.
Technical Paper

Measurement of Dynamic Parameters of Automotive Exhaust Hangers

2001-04-30
2001-01-1446
Different methodologies to test and analyze the dynamic stiffness (K) and damping (C) properties of several silicone and EPDM rubber automotive exhaust hangers were investigated in this research. One test method utilized a standard MTS hydraulic test machine with a single sine excitation at discrete frequencies and amplitude levels, while a second method utilized an electrodynamic shaker with broadband excitation. Analysis techniques for extracting the equivalent stiffness and damping were developed in the shaker tests using data from time domain, frequency domain, as well as force transmissibility. A comparison of all of the shaker testing methods for repeatability and accuracy was done with the goal of determining the appropriate method that generates the most consistent results over the range of testing. The shaker testing in the frequency domain using a frequency response function model produced good results and the set-up is relatively inexpensive.
Technical Paper

Subcompact Sport Vehicle Development

2001-03-05
2001-01-3817
Considering that the sport cars versions are normally derived from medium car segment, the big challenge in this program was to transform one subcompact in a real sport car. With the focus at the consumer that looks for performance and enjoys sporty driving in conjunction with project financials and competition data the preliminary content was established together with all involved areas, Marketing, Finance, Manufacturing and Quality. Based on the items that indicate high performance, the items considered mandatory or desired by the customer and items detected by Quality research including internal indicators and external indicators, ICCD (Intensified Customer Concern Definition) and TGW (Things Going Wrong), the content was developed in three main directions towards Customer Satisfaction, I) Characterize the vehicle as a high performance car, a pure sport car with outstanding performance for power train, suspensions and brakes mainly.
Technical Paper

A Comparison of Pressure Sensitive Paint (PSP) Techniques for Aerodynamic Testing at Slow Velocities

2002-03-04
2002-01-0255
Pressure Sensitive Paint (PSP) has been used for several years by the aircraft industry in transonic wind tunnel testing where the oxygen concentrations are low and the luminescence of the paint is easily recorded. Extending PSP to slower speeds where the oxygen concentrations are closer to atmospheric conditions is much more challenging. For the past few years, work has been underway at both Wright Patterson Air Force Base and Ford Motor Company to advance PSP techniques for testing at slower speeds. The CRADA (Cooperative Research and Development Agreement) provided a way for comparisons to be made of the different PSP systems that were being investigated. This paper will report on PSP tests conducted as part of the CRADA.
X