Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

The Effects of Natural Aging on Fleet and Durability Vehicle Engine Mounts from a Dynamic Characterization Perspective

2001-04-30
2001-01-1449
Elastomers are traditionally designed for use in applications that require specific mechanical properties. Unfortunately, these properties change with respect to many different variables including heat, light, fatigue, oxygen, ozone, and the catalytic effects of trace elements. When elastomeric mounts are designed for NVH use in vehicles, they are designed to isolate specific unwanted frequencies. As the elastomers age however, the desired elastomeric properties may have changed with time. This study looks at the variability seen in new vehicle engine mounts and how the dynamic properties change with respect to miles accumulated on fleet and durability test vehicles.
Technical Paper

A throttle/brake control law for vehicle intelligent cruise control

2000-06-12
2000-05-0369
A throttle/brake control law for the intelligent cruise control (ICC) system has been proposed in this paper. The ICC system consists of a vehicle detection sensor, a controller and throttle/brake actuators. For the control of a throttle/brake system, we introduced a solenoid-valve-controlled electronic vacuum booster (EVB) and a step-motor-controlled throttle actuator. Nonlinear computer model for the electronic vacuum booster has been developed and the simulations were performed using a complete nonlinear vehicle model. The proposed control law in this paper consists of an algorithm that generates the desired acceleration/deceleration profile in an ICC situation, a throttle/brake switching logic and a throttle and brake control algorithm based on vehicle dynamics. The control performance has been investigated through computer simulations and experiments.
Technical Paper

Study of optimization about smoke and driveability in diesel engine

2000-06-12
2000-05-0315
In an effort to protect the earth''s environment emission regulations in the diesel engine field are becoming increasingly strict. Especially, free acceleration smoke is one of the major concerns because it not only affects the perception for the clearance of diesel engines, but also is regulated by emission legislations. In this report, we will describe how various engine parameters effect the free acceleration smoke and also describe how we can optimize a startability of vehicle simultaneously with the reduction of smoke.
Technical Paper

Three-way catalysts for partial lean-burn engine vehicle

2000-06-12
2000-05-0322
Emission of carbon dioxide from mobile sources seriously concerned to solve greenhouse effect and high price of gasoline in some countries have resulted in the development of lean-burn concept engine. In spite of many studies on the lean deNOx catalyst, we have no clear solution to obtain high fuel economy and high efficiency of NOx conversion in lean-burn application. This paper describes applicability and problems of NOx adsorber system to partial lean-burn vehicle, the development of three-way catalyst with improvement of washcoat technology based on three-way catalyst used for gasoline application, and comparison test results of evaluations is synthesized gas activity test, Federal Test Procedure (FTP) test, etc. This study shows improved three-way catalysts in partial lean- burn vehicle have max. 89% of NOx conversion in FTP without adding rich spike and regeneration functions to engine management system.
Technical Paper

In search of SULEV-compliant THC emission reduction technologies

2000-06-12
2000-05-0298
This paper describes the development of THC reduction technologies compliant with SULEV regulations. Technologies embodied by the developmental work include improvement of fuel spay atomization, quick warm-up through coolant control shut off, and acceleration of fuel atomization for the fast rise of cylinder head temp inside the water jacket as well as the improvement of combustion state. The technologies likewise entail reduced HC while operating in lean A/F condition during engine warm-up with the cold lean-burn technology, individual cylinder A/F control for improvement of catalytic converting efficiency, aftertreatment such as thin-wall catalyst, HC absorber and EHC and etc., through vehicle application evaluation in cold start. We carried out an experimental as well as a practical study against SULEV regulations, and the feasibility of adopting these items in vehicle was likewise investigated.
Technical Paper

A development of diesel oxidation catalyst and the evaluation of its performance characteristic

2000-06-12
2000-05-0287
The new concept oxidation for diesel engine has been developed. It has been designed to use under circumstances of the "dry condition" of exhausted emission, which indicates low soluble organics and high dry soot concentration under high exhaust gas temperature. For the reliability and performance of catalysts in dry condition, several design concepts were established. First of all, extremely low sulfate formation on catalyst at high temperature conditions, and an improved soluble organic burning characteristics was required. A minimization of deposition of the particulate component, especially sulfate, was obtained from the adjustment of washcoat loading and material property. Six different types of catalysts have been prepared and tested in a laboratory. Diesel vehicle test showed the possibility that soluble organic could be removed mostly with minimal sulfate formation.
Technical Paper

Fuel Evaporation Parameter Identification during SI Cold Start

2001-03-05
2001-01-0552
The stochastic properties of continuous time model parameters obtained through discrete least squares estimation are examined. Particular attention is given to the application of estimating the fuel evaporation dynamics of a V-8 SI engine. The continuous time parameter distributions in this case are biased. The bias is shown to be a function of both measurement noise and sampling rate selection. Analysis and experimental results suggest that for each particular model, there is a corresponding optimum sampling rate. A bias compensation formula is proposed that improves the accuracy of least squares estimation without iterative techniques.
Technical Paper

Combustion System Development in a Small Bore HSDI Diesel Engine for Low Fuel Consuming Car

2001-03-05
2001-01-1257
As CO2 emissions from vehicles is gaining a global attention the low fuel consuming power-train is in much greater demand than before. Some alternatives are suggested but the HSDI diesel engine would be the most realistic solution. Vehicle simulation shows that low fuel consuming car can be realized by applying 1∼1.2L HSDI diesel engine in vehicles weighing about 750kg. While the direct injection diesel engine has been researched for a long time enhancement of mixing between air and fuel in a limited space makes it challenging area to develop a small swept volume HSDI diesel engine. We are investigating small HSDI diesel engine combustion technologies as an effort to realize low fuel consuming vehicle. Our main objective in this study is to have a better understanding of the combustion related parameters from such a small size HSDI diesel engine in order to improve engine performance.
Technical Paper

A Cascade Atomization and Drop Breakup Model for the Simulation of High-Pressure Liquid Jets

2003-03-03
2003-01-1044
A further development of the ETAB atomization and drop breakup model for high pressure-driven liquid fuel jets, has been developed, tuned and validated. As in the ETAB model, this breakup model reflects a cascade of drop breakups, where the breakup criterion is determined by the Taylor drop oscillator and each breakup event resembles experimentally observed breakup mechanisms. A fragmented liquid core due to inner-nozzle disturbances is achieved by injecting large droplets subject to this breakup cascade. These large droplets are equipped with appropriate initial deformation velocities in order to obtain experimentally observed breakup lengths. In contrast to the ETAB model which consideres only the bag breakup or the stripping breakup mechanism, the new model has been extended to include the catastrophic breakup regime. In addition, a continuity condition on the breakup parameters has lead to the reduction of one model constant.
Technical Paper

Effect of Normalized Microstructure in Alloy Steel on the Performance of Planetary Gear Set of Automatic Transmission

1997-02-24
970972
The banded microstructure of pearlite and ferrite in normalized alloy steel is susceptible to thermal distortion during carburizing process due to its unidirectional orientation parallel to rolling direction. The planetary gears with material of banded microstructure have been experienced in high thermal distortion during carburizing and quenching process and result in uneven surface hardness and effective case depth at the inside of pinion gear after honing. These defects played failure initiation site roles in durability test during development of new automatic transmission. The galling between the contacting components in severe lubricating system was the main failure mechanism. Double normalizing at 920 °C was designed to resolve the banded microstructure of normalized alloy steel. The microstructure and grain size of the double heated steel became equiaxed and fine due to homogenizing and recrystallization through double heat treatment.
Technical Paper

The Effects of Injection Parameters on a Heavy-Duty Diesel Engine with TICS System

1998-02-23
981070
In this study, a series of tests have been carried out to evaluate the effects of the injection rate and timing on bsfc, NOx, and PM emissions in a heavy-duty diesel engine with TICS FIE system. Injection line pressure, cylinder pressure, NOx and smoke were measured with various injection times and injection rates. The injection rate was altered at a fixed injection timing, which could be realized either by changing the TICS setting time or by using different cam profiles. The injection time was varied by using TICS timing control function at a given setting time. A parametric study of the injection rate in in-line pump system was tried to correlate injection rate variations with combustion characteristics and emission. Two parameters, the injection pressure rising rate and the initially injected fuel quantity were introduced to characterize fuel injection.
Technical Paper

Dynamic Characteristics of Oil Consumption - Relationship Between the Instantaneous Oil Consumption and the Location of Piston Ring Gap

1998-10-19
982442
In order to understand the relationship between the location of piston ring gap and instantaneous change of oil consumption during engine operation, the ring rotation and instantaneous oil consumption were measured simultaneously in a hydrogen fueled single cylinder spark ignition engine. A radioactive-tracer technique was used to measure the rotational movement of piston ring. Two kinds of isotopes(60Co and 192Ir) with different energy level were mounted to the top and 2nd rings to measure each ring's movement independently. The instantaneous oil consumption was obtained by analyzing CO2 concentration in exhaust gas. From the result of ring rotational movement, typical patterns of ring rotation were obtained as follows; Rotational movements are usually initiated by changing the operating conditions. Piston rings tend to rotate easily under low load condition. The rotation speed of ring usually ranged in 0.2∼0.4 rev/min for top ring and 0.5∼0.6 rev/min for 2nd ring.
Technical Paper

A Study of the Vapor- and Particle-Phase Sulfur Species in the Heavy-Duty Diesel Engine EGR Cooler

1998-05-04
981423
To meet future NO, heavy-duty diesel emissions standards, exhaust gas recirculation (EGR) technology is likely to be used. To improve fuel economy and further lower emissions, the recirculated exhaust gas needs to be cooled, with the possibility that cooling of the exhaust gas may form sulfuric acid condensate in the EGR cooler. This corrosive condensate can cause EGR cooler failure and consequentially result in severe damage to the engine. Both a literature review and a preliminary experimental study were conducted. In this study, a manually controlled EGR system was installed on a 1995 Cummins Ml l-330E engine which was operated at EPA mode 9* (1800 rpm and 75% load). The Goksoyr-Ross method (1)** was used to measure the particle-phase sulfate and vapor-phase H2SO4 and SO2 at the inlet and outlet locations of the EGR cooler, obtaining H2SO4 and SO2 concentrations. About 0.5% of fuel sulfur in the EGR cooler was in the particle-phase.
Technical Paper

An Experimental Comparison Between Air-Assisted Injection System and High Pressure Injection System at 2-Stroke Engine

1995-02-01
950270
This study presents engine test results of HMC's piston-ported 2-stroke gasoline engine. This single cylinder engine of 400cc displacement has featured in direct injection(DI) of fuel and external blower scavenging of air. Two different concepts of DI system were adopted, one is high pressure fuel injection(HPFI) system for solid fuel only and the other is low pressure air-assisted fuel injection(AAFI) system. Two kinds of engines with different scavenging intake port shapes and areas were tested to find the effect of scavenging port type on engine performance. Also tested were trends of BSFC, BSHC and BSCO versus fuel injection timing and engine speed with HPFI and AAFI, respectively. Power and boost pressure at full load and BSFC and BSHC at part load were tested.
Technical Paper

A Study on the Flow in the Engine Intake System

1995-09-01
952067
To design an optimum engine intake system, a flow model for the intake manifold was developed by the method of characteristics. The flow in the intake manifold was one-dimensional, and finite difference equations were derived from the governing equations of flow. The thermodynamic properties inside a cylinder were found by the first law of thermodynamics, and the boundary conditions were formulated using a steady flow model. By comparing the calculated results with experimental data, the appropriate boundary conditions and convergence limits for a flow model were established. From this model, design variables for the intake system were investigated. The optimum manifold length became shorter when the engine speed were increased. The effect of intake valve timings on inlet air mass was also studied by this model. Advancing intake valve opening decreased inlet air mass slightly, and the optimum intake valve closing was found.
Technical Paper

The Effects of Vehicle Velocity and Engine Mount Stiffness on Ride Comfort

1994-03-01
941045
For the improvement of ride quality, development of vibration damping control systems and isolating methods become more important. To define basic ride vibrational modes, the effects of vehicle velocity and wheelbase on the standard road surfaces should be investigated. The different vibrational responses depending on the measurement positions of a vehicle body are presented with the bounce and the pitch motions. A methodology for the isolation of engine mount system's resonance to the road input and periodical excitations of tire/wheel nonuniformity forces are discussed. Using the computer simulation and the experimental results, a useful ride model with respect to the vehicle velocity and the stiffness of engine mount is presented.
Technical Paper

Weight Reduction and Noise Refinement of the Hyundai 1.5 Liter Powertrain

1994-03-01
940995
The weight reduction and noise refinement of powertrain has been major concern in automotive industry although they are known as self trade-off. This paper presents various methods to deal with those problems for new Hyundai 1.5 liter powertrain. It was possible to reduce the weight of powertrain by using plastic for both headcover and intake manifold, aluminum for crankshaft damper pulley and stainless steel for exhaust manifold and by reducing the general thickness of cylinder block On the other hand, the noise refinement of vibration in the powertrain was made by optimizing the engine structure and by adapting the hydraulic lash adjuster valve train system, which was proved to be effective in mechanical noise of engine.
Technical Paper

A Study on the Transient Characteristics of Automatic Transmission with Detailed Dynamic Modeling

1994-03-01
941014
Transient characteristics during gear ratio change including the disturbance of output torque have been important issues in the study of passenger car automatic transmission. In this paper, to investigate the transient characteristics during gear ratio change, a detailed dynamic model of the power transmission system of a passenger car focused on the automatic transmission was proposed and the governing dynamic equations were derived and solved. The results of simulation showed good agreements with the experimental data. It was proved that the suggested dynamic model is very useful to analyze the phenomena occurred during the speed ratio change.
X