Refine Your Search

Topic

Author

Search Results

Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Journal Article

Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-1324
In this paper, a model-based linear estimator and a non-linear control law for an Fe-zeolite urea-selective catalytic reduction (SCR) catalyst for heavy duty diesel engine applications is presented. The novel aspect of this work is that the relevant species, NO, NO2 and NH3 are estimated and controlled independently. The ability to target NH3 slip is important not only to minimize urea consumption, but also to reduce this unregulated emission. Being able to discriminate between NO and NO2 is important for two reasons. First, recent Fe-zeolite catalyst studies suggest that NOx reduction is highly favored by the NO 2 based reactions. Second, NO2 is more toxic than NO to both the environment and human health. The estimator and control law are based on a 4-state model of the urea-SCR plant. A linearized version of the model is used for state estimation while the full nonlinear model is used for control design.
Technical Paper

Computational Optimization of a Split Injection System with EGR and Boost Pressure/Compression Ratio Variations in a Diesel Engine

2007-04-16
2007-01-0168
A previously developed CFD-based optimization tool is utilized to find optimal engine operating conditions with respect to fuel consumption and emissions. The optimization algorithm employed is based on the steepest descent method where an adaptive cost function is minimized along each line search using an effective backtracking strategy. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space. The application of this optimization tool is demonstrated for the Sulzer S20, a central-injection, non-road DI diesel engine. The optimization parameters are the start of injection of the two pulses of a split injection system, the duration of each pulse, the exhaust gas recirculation rate, the boost pressure and the compression ratio.
Technical Paper

A Study of the Filtration and Oxidation Characteristics of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter

2007-04-16
2007-01-1123
An experimental and modeling study was conducted to study the passive regeneration of a catalyzed particulate filter (CPF) by the oxidation of particulate matter (PM) via thermal and Nitrogen dioxide/temperature-assisted means. Emissions data in the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR and a diesel oxidation catalyst (DOC) - catalyzed particulate filter (CPF) in the exhaust system was measured and used for this study. A series of experiments was conducted to evaluate the performance of the DOC, CPF and DOC+CPF configurations at various engine speeds and loads.
Technical Paper

Impact of EGR on Combustion Processes in a Hydrogen Fuelled SI Engine

2008-04-14
2008-01-1039
With concerns continuing to grow with respect to global warming from greenhouse gases, further regulations are being examined, developed and are expected for the emission of CO2 as an automobile exhaust. Renewable alternate fuels offer the potential to significantly reduce the CO2 impact of transportation. Hydrogen as a spark - ignition (SI) engine fuel provides this potential for significant CO2 reduction when generated from renewable resources. In addition, hydrogen has advantageous combustion properties including a wide flammable mixture range which facilitates lean burning and high dilution, fast combustion energy release and zero CO2 emissions. However, the high burning rates and fast energy release can lead to excessive in-cylinder pressures and temperatures resulting in combustion knock and high NOx emissions at stoichiometric operation.
Technical Paper

Experimental and Modeling Results Comparing Two Diesel Oxidation Catalyst - Catalyzed Particulate Filter Systems

2008-04-14
2008-01-0484
Steady-state particulate loading experiments were conducted on an advanced production catalyzed particulate filter (CPF), both with and without a diesel oxidation catalyst (DOC). A heavy-duty diesel engine was used for this study with the experiments conducted at 20, 40, 60 and 75 % of full load (1120 Nm) at rated speed (2100 rpm). The data obtained from these experiments were used and are necessary for calibrating the MTU 1-D 2-Layer CPF model. These experimental and modeling results were compared to previous research conducted at MTU that used the same engine but an earlier development version of the combination of DOC and CPF. The motivation for the comparison of the two systems was to determine whether the reformulated production catalysts performed as good or better than the early development catalysts. The results were compared to understand the filtration and oxidation differences between the two DOC+CPF and the CPF-only aftertreatment systems.
Technical Paper

Adequacy of Reduced Order Models for Model-Based Control in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-0617
Model-based control strategies are important for meeting the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-SCR catalysts. To be implementable on the vehicle, the models should capture the essential behavior of the system, while not being computationally intensive. This paper discusses the adequacy of two different reduced order SCR catalyst models and compares their performance with a higher order model. The higher order model assumes that the catalyst has both diffusion and reaction kinetics, whereas the reduced order models contain only reaction kinetics. After describing each model, its parameter identification and model validation based on experiments on a Navistar I6 7.6L engine are presented. The adequacy of reduced order models is demonstrated by comparing the NO, NO2 and NH3 concentrations predicted by the models to their concentrations from the test data.
Technical Paper

Development of Control Logic and Optimization of Catalyst in DeNOx System with Secondary Injection for Euro 6

2010-04-12
2010-01-1067
A technical approach to reduce NOx and to minimize the fuel consumption caused by the DeNOx aftertreatment system was introduced. The NEDC mode test of the HMC (Hyundai Motor Company) DeNOx system was done with a Euro 5 vehicle (ETW (Equivalent Test Weight) = 1,810 kg, 143 kW, 430 N⋅m), which resulted in that the Euro 6 legislation standards were met. The NOx and HC emissions were, respectively, measured to be 0.059 g/km and 0.087 g/km with the hydrothermal-aged catalysts, and CO₂ was increased by ≺ 4%.
Technical Paper

Development of Urea-SCR System for Light-Duty Diesel Passenger Car

2001-03-05
2001-01-0519
Urea-SCR system consisted of combined deNOx catalysts with wide range of temperature window, injector, sensor and injection controller. Synthetic gas activity test and NOx conversion efficiency test on the engine bench were carried out to evaluate and improve the performance of this system. To better suit the application of the urea-SCR system without engine modification, temperature of catalyst and engine RPM were used as input data to control amounts of urea aqueous solution that reacts with NOx. We concentrated on designing types of deNOx catalysts and controlling amounts of urea solution under different driving conditions to achieve higher NOx reduction and wider temperature window. Designed urea-SCR system showed substantial NOx reduction performance and relatively wide temperature window under different driving conditions.
Technical Paper

An Experimental and Numerical Study of the Performance Characteristics of the Diesel Oxidation Catalyst in a Continuously Regenerating Particulate Filter

2003-10-27
2003-01-3176
A one-dimensional model simulating the oxidation of CO, HC, and NO was developed to predict the gaseous emissions downstream of a diesel oxidation catalyst (DOC). The model is based on the conservation of mass, species, and energy inside the DOC and draws on past research literature. Steady-state experiments covering a wide range of operating conditions (exhaust temperatures, flow rates and gaseous emissions) were performed, and the data were used to calibrate and validate the model. NO conversion efficiencies of 50% or higher were obtained at temperatures between 300°C and 350°C. CO conversion efficiencies of 85% or higher and HC conversion efficiencies of 75% or higher were found at every steady state condition above 200°C. The model agrees well with the experimental results at temperatures from 200°C to 500°C, and volumetric flow rates from 8 to 42 actual m3/min.
Technical Paper

Three-way catalysts for partial lean-burn engine vehicle

2000-06-12
2000-05-0322
Emission of carbon dioxide from mobile sources seriously concerned to solve greenhouse effect and high price of gasoline in some countries have resulted in the development of lean-burn concept engine. In spite of many studies on the lean deNOx catalyst, we have no clear solution to obtain high fuel economy and high efficiency of NOx conversion in lean-burn application. This paper describes applicability and problems of NOx adsorber system to partial lean-burn vehicle, the development of three-way catalyst with improvement of washcoat technology based on three-way catalyst used for gasoline application, and comparison test results of evaluations is synthesized gas activity test, Federal Test Procedure (FTP) test, etc. This study shows improved three-way catalysts in partial lean- burn vehicle have max. 89% of NOx conversion in FTP without adding rich spike and regeneration functions to engine management system.
Technical Paper

Scavenger free three-way catalyst with low hydrogen sulfide emission

2000-06-12
2000-05-0308
This study suggests new types of catalysts that show low hydrogen sulfide emission without scavenger such as NiO. Hydrogen sulfide can be reduced by changing the physicochemical properties of washcoat components. Synthesized gas activity tests were performed to investigate the effect of modified washcoat on hydrogen sulfide formation and catalytic activity. BET surface area tests, X- ray diffraction tests, and gas chromatography tests were also carried out to examine the characteristics of catalysts. Preparation methods for catalysts were focused on minimizing the adsorption of sulfur species on catalysts. The first approach is heat treatment of cerium oxide to reduce adsorption sites for sulfur compounds. But this leads to deterioration of CO and NOx conversion efficiencies. The second one is adding new types of promoters that increase thermal durability and dynamic oxygen storing function of cerium oxide.
Technical Paper

In search of SULEV-compliant THC emission reduction technologies

2000-06-12
2000-05-0298
This paper describes the development of THC reduction technologies compliant with SULEV regulations. Technologies embodied by the developmental work include improvement of fuel spay atomization, quick warm-up through coolant control shut off, and acceleration of fuel atomization for the fast rise of cylinder head temp inside the water jacket as well as the improvement of combustion state. The technologies likewise entail reduced HC while operating in lean A/F condition during engine warm-up with the cold lean-burn technology, individual cylinder A/F control for improvement of catalytic converting efficiency, aftertreatment such as thin-wall catalyst, HC absorber and EHC and etc., through vehicle application evaluation in cold start. We carried out an experimental as well as a practical study against SULEV regulations, and the feasibility of adopting these items in vehicle was likewise investigated.
Technical Paper

A development of diesel oxidation catalyst and the evaluation of its performance characteristic

2000-06-12
2000-05-0287
The new concept oxidation for diesel engine has been developed. It has been designed to use under circumstances of the "dry condition" of exhausted emission, which indicates low soluble organics and high dry soot concentration under high exhaust gas temperature. For the reliability and performance of catalysts in dry condition, several design concepts were established. First of all, extremely low sulfate formation on catalyst at high temperature conditions, and an improved soluble organic burning characteristics was required. A minimization of deposition of the particulate component, especially sulfate, was obtained from the adjustment of washcoat loading and material property. Six different types of catalysts have been prepared and tested in a laboratory. Diesel vehicle test showed the possibility that soluble organic could be removed mostly with minimal sulfate formation.
Technical Paper

A Controlled EGR Cooling System for Heavy Duty Diesel Applications Using the Vehicle Engine Cooling System Simulation

2002-03-04
2002-01-0076
In order to comply with 2002 EPA emissions regulations, cooled exhaust gas recirculation (EGR) will be used by heavy duty (HD) diesel engine manufacturers as the primary means to reduce emissions of nitrogen oxides (NOx). A feedforward controlled EGR cooling system with a secondary electric water pump and proportional-integral-derivative (PID) feedback has been designed to cool the recirculated exhaust gas in order to better realize the benefits of EGR without overcooling the exhaust gas since overcooling leads to the fouling of the EGR cooler with acidic residues. A system without a variable controlled coolant flow rate is not able to achieve these goals because the exhaust temperature and the EGR schedule vary significantly, especially under transient and warm-up operating conditions. Simulation results presented in this paper have been determined using the Vehicle Engine Cooling System Simulation (VECSS) software, which has been developed and validated using actual engine data.
Technical Paper

Design and Testing of a Single Cylinder, Turbocharged, Four-Stroke Snowmobile with E.F.I. and Catalytic Exhaust Treatment

2002-10-21
2002-01-2761
The successful implementation of a clean, quiet, four-stroke engine into an existing snowmobile chassis has been achieved. The snowmobile is easy to start, easy to drive, and environmentally friendly. The following paper describes the conversion process in detail with actual dynamometer and field test data. The vehicle is partially compliant with the proposed 2010 EPA snowmobile emissions regulations and passes an independently conducted, 74 dBA, full throttle pass-by noise test. The vehicle addresses the environmental issues surrounding snowmobiles and remains economical, with an approximate cost of $6,345.
Technical Paper

Effect of Combustion on Diesel Spray Penetrations in Relation to Vaporizing, Non-Reacting Sprays

2016-10-17
2016-01-2201
Extensive studies have addressed diesel sprays under non-vaporizing, vaporizing and combusting conditions respectively, but further insights into the mechanism by which combustion alters the macroscopic characteristics including the spray penetration and the shape of the spray under diesel engine conditions are needed. Contradictory observations are reported in the literature regarding the combusting diesel spray penetration compared to the inert conditions, and it is an objective of this study to provide further insights and analyses on the combusting spray characteristics by expanding the range of operating parameters. Parameters varied in the studies are charge gas conditions including oxygen levels of 0 %, 15%, 19%, charge densities of 22.8 & 34.8 kg/m3, and charge temperatures of 800, 900 & 1050 K for injection pressures of 1200, 1500, and 1800 bar with a single-hole injector with a nozzle diameter of 100 μm.
X