Refine Your Search

Topic

Author

Search Results

Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

Improved Model for Coupled Structural-Acoustic Modes of Tires

2015-06-15
2015-01-2199
Experimental measurements of tire tread band vibration have provided direct evidence that higher order structural-acoustic modes exist in tires, not just the well-known fundamental acoustical mode. These modes display both circumferential and radial pressure variations within the tire's air cavity. The theory governing these modes has thus been investigated. A brief recapitulation of the previously-presented coupled structural-acoustical model based on a tensioned string approach will be given, and then an improved tire-acoustical model with a ring-like shape will be introduced. In the latter model, the effects of flexural and circumferential stiffness are considered. This improved model accounts for propagating in-plane vibration in addition to the essentially structure-borne flexural wave and the essentially airborne longitudinal wave accounted for in the previous model. The longitudinal structure-borne wave “cuts on” at the tire's circumferential ring frequency.
Journal Article

Adaptive Robust Motion Control of an Excavator Hydraulic Hybrid Swing Drive

2015-09-29
2015-01-2853
Over the last decade, a number of hybrid architectures have been proposed with the main goal of minimizing energy consumption of off-highway vehicles. One of the architecture subsets which has progressively gained attention is hydraulic hybrids for earth-moving equipment. Among these architectures, hydraulic hybrids with secondary-controlled drives have proven to be a reliable, implementable, and highly efficient alternative with the potential for up to 50% engine downsizing when applied to excavator truck-loading cycles. Multi-input multi-output (MIMO) robust linear control strategies have been developed by the authors' group with notable improvements on the control of the state of charge of the high pressure accumulator. Nonetheless, the challenge remains to improve the actuator position and velocity tracking.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Journal Article

Ionization Signal Response during Combustion Knock and Comparison to Cylinder Pressure for SI Engines

2008-04-14
2008-01-0981
In-cylinder ion sensing is a subject of interest due to its application in spark-ignited (SI) engines for feedback control and diagnostics including: combustion knock detection, rate and phasing of combustion, and mis-fire On Board Diagnostics (OBD). Further advancement and application is likely to continue as the result of the availability of ignition coils with integrated ion sensing circuitry making ion sensing more versatile and cost effective. In SI engines, combustion knock is controlled through closed loop feedback from sensor metrics to maintain knock near the borderline, below engine damage and NVH thresholds. Combustion knock is one of the critical applications for ion sensing in SI engines and improvement in knock detection offers the potential for increased thermal efficiency. This work analyzes and characterizes the ionization signal in reference to the cylinder pressure signal under knocking and non-knocking conditions.
Journal Article

Fuel-Air Mixing Characteristics of DI Hydrogen Jets

2008-04-14
2008-01-1041
The following computational study examines the structure of sonic hydrogen jets using inlet conditions similar to those encountered in direct-injection hydrogen engines. Cases utilizing the same mass and momentum flux while varying exit-to-chamber pressure ratios have been investigated in a constant-volume computational domain. Furthermore, subsonic versus sonic structures have been compared using both hydrogen and ethylene fuel jets. Finally, the accuracy of scaling arguments to characterize an underexpanded jet by a subsonic “equivalent jet” has been assessed. It is shown that far downstream of the expansion region, the overall jet structure conforms to expectations for self-similarity in the far-field of subsonic jets. In the near-field, variations in fuel inlet-to-chamber pressure ratios are shown to influence the mixing properties of sonic hydrogen jets. In general, higher pressure ratios result in longer shock barrel length, though numerical resolution requirements increase.
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

2012-09-24
2012-01-2035
Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Technical Paper

Surface Pressure Fluctuations in Separated-Reattached Flows Behind Notched Spoilers

2007-05-15
2007-01-2399
Notched spoilers may be used to suppress flow-induced cavity resonance in vehicles with open sunroofs or side windows. The notches are believed to generate streamwise vortices that break down the structure of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. The objectives of the present study were to gain a better understanding of the buffeting suppression mechanisms associated with notched spoilers, and to gather data for computational model verification. To this end, experiments were performed to characterize the surface pressure field downstream of straight and notched spoilers mounted on a rigid wall to observe the effects of the notches on the static and dynamic wall pressure. Detailed flow velocity measurements were made using hot-wire anemometry. The results indicated that the presence of notches on the spoiler reduces drag, and thus tends to move the flow reattachment location closer to the spoiler.
Technical Paper

Real-time Thermal Observer for Electric Machines

2006-11-07
2006-01-3102
A temperature estimation algorithm (thermal observer) that provides accurate estimates of the thermal states of an electric machine in real time is presented. The thermal observer is designed to be a Kalman filter that combines thermal state predictions from a lumped-parameter thermal model of the electric machine with temperature measurements from a single external temperature sensor. An analysis based on the error covariance matrix of the Kalman filter is presented to guide the selection of the best sensor location. The thermal observer performance is demonstrated using a 3.8 kW permanent-magnet machine. Comparison of the thermal observer estimates and the actual temperatures demonstrate that this approach can provide accurate knowledge of the machine's thermal states despite modeling uncertainty and unknown initial machine thermal states.
Technical Paper

Analytical Simulation of the Effects of Noise Control Treatments on an Excavator Cab using Statistical Energy Analysis

2007-05-15
2007-01-2315
The objective of this study was to utilize Statistical Energy Analysis (SEA) to simulate the effects of a variety of noise control treatments on the interior sound pressure level (SPL) of a commercial excavator cab. In addition, the effects of leaks on the SPL of the excavator cab were also investigated. This project was conducted along with various tests that were used to determine the inputs needed to accurately represent the loads that the cab experienced during operation. This paper explains the how the model was constructed, how the loads were applied to the model, the results that were obtained from application of treatments, and a study of the effects of introducing leaks to the cab structure in the SEA model.
Technical Paper

Evaluation of Electro-acoustic Techniques for In-Situ Measurement of Acoustic Absorption Coefficient of Grass and Artificial Turf Surfaces

2007-05-15
2007-01-2225
The classical methods of measuring acoustic absorption coefficient using an impedance tube and a reverberation chamber are well established [1, 2]. However, these methods are not suitable for in-situ applications. The two in-situ methods; single channel microphone (P- probe) and dual channel acoustic pressure and particle velocity (Pu-probe) methods based on measurement of impulse response functions of the material surface under test, provide considerable advantage in data acquisition, signal processing, ease and mobility of measurement setup. This paper evaluates the measurement techniques of these two in-situ methods and provides results of acoustic absorption coefficient of a commercial artificial Astroturf, a Dow quash material, and a grass surface.
Technical Paper

Comparisons of Computed and Measured Results of Combustion in a Diesel Engine

1998-02-23
980786
Results of computations of flows, sprays and combustion performed in an optically- accessible Diesel engine are presented. These computed results are compared with measured values of chamber pressure, liquid penetration, and soot distribution, deduced from flame luminosity photographs obtained in the engine at Sandia National Laboratories and reported in the literature. The computations were performed for two operating conditions representing low load and high load conditions as reported in the experimental work. The computed and measured peak pressures agree within 5% for both the low load and the high load conditions. The heat release rates derived from the computations are consistent with expectations for Diesel combustion with a premixed phase of heat release and then a diffusion phase. The computed soot distribution shows noticeable differences from the measured one.
Technical Paper

Simulation of MADMEL Power Systems Components

1998-04-21
981258
Detailed computer models of system components for More Electric Aircraft have been developed using the Advanced Control System Language (ACSL) and its graphical front-end, Graphic Modeller. Among the devices modeled are a wound-rotor synchronous generator with parallel bridge-rectifier outputs, a switched-reluctance generator, and various loads including a DC-DC converter, an inverter-driven induction motor, and an electro-hydrostatic actuator. Results from the simulations are presented together with corroborating experimental test results.
Technical Paper

Correlating Dynamic Pressure Signal Features to Diesel Particulate Filter Load

2007-04-16
2007-01-0333
The firing frequency components of the dynamic diesel particulate filter pressure signals carry significant information about the particulate load. Specifically, the normalized magnitude and relative phase of the firing frequency components exhibit clear dependence on the particulate load in a filter. Further, the test-to-test variation and back-to-back repeatability in this work was better for the dynamic pressure signal features than for the mean value pressure drop. This work provides a promising extension or alternative to the mean value pressure drop correlation to particulate load through Darcy's Law. The results may be particularly useful for filter monitoring and control.
Technical Paper

Accelerometer Based Sensing of Combustion in a High Speed HPCR Diesel Engine

2007-04-16
2007-01-0972
The capability to detect combustion in a diesel engine has the potential of being an important control feature to meet increasingly stringent emission regulations and for the development of alternative combustion strategies such as HCCI and PCCI. In this work, block mounted accelerometers are investigated as potential feedback sensors for detecting combustion characteristics in a high-speed, high pressure common rail (HPCR), 1.9L diesel engine. Accelerometers are positioned in multiple placements and orientations on the engine, and engine testing is conducted under motored, single and pilot-main injection conditions. Engine tests are then conducted at varying injection timings to observe the resulting time and frequency domain changes of both the pressure and acceleration signals.
Technical Paper

A Study of the Filtration and Oxidation Characteristics of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter

2007-04-16
2007-01-1123
An experimental and modeling study was conducted to study the passive regeneration of a catalyzed particulate filter (CPF) by the oxidation of particulate matter (PM) via thermal and Nitrogen dioxide/temperature-assisted means. Emissions data in the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR and a diesel oxidation catalyst (DOC) - catalyzed particulate filter (CPF) in the exhaust system was measured and used for this study. A series of experiments was conducted to evaluate the performance of the DOC, CPF and DOC+CPF configurations at various engine speeds and loads.
Technical Paper

Experimental and Modeling Results Comparing Two Diesel Oxidation Catalyst - Catalyzed Particulate Filter Systems

2008-04-14
2008-01-0484
Steady-state particulate loading experiments were conducted on an advanced production catalyzed particulate filter (CPF), both with and without a diesel oxidation catalyst (DOC). A heavy-duty diesel engine was used for this study with the experiments conducted at 20, 40, 60 and 75 % of full load (1120 Nm) at rated speed (2100 rpm). The data obtained from these experiments were used and are necessary for calibrating the MTU 1-D 2-Layer CPF model. These experimental and modeling results were compared to previous research conducted at MTU that used the same engine but an earlier development version of the combination of DOC and CPF. The motivation for the comparison of the two systems was to determine whether the reformulated production catalysts performed as good or better than the early development catalysts. The results were compared to understand the filtration and oxidation differences between the two DOC+CPF and the CPF-only aftertreatment systems.
Technical Paper

A Methodology to Estimate the Mass of Particulate Matter Retained in a Catalyzed Particulate Filter as Applied to Active Regeneration and On-Board Diagnostics to Detect Filter Failures

2008-04-14
2008-01-0764
A methodology to estimate the mass of particulate retained in a catalyzed particulate filter as a function of measured total pressure drop, volumetric flow rate, exhaust temperature, exhaust gas viscosity and cake and wall permeability applicable to real-time computation is discussed. This methodology is discussed from the view point of using it to indicate when to initiate active regeneration and as an On-Board Diagnostic tool to detect filter failures. Steady-state loading characterization experiments were conducted on a catalyzed diesel particulate filter (CPF) in a Johnson Matthey CCRT® (catalyzed continuously regenerating trap) system. The experiments were performed using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Experiments were conducted at 20, 60 and 75% of full engine load (1120 Nm) and rated speed (2100 rpm) to measure the pressure drop, transient filtration efficiency, particulate mass balance, and gaseous emissions.
Technical Paper

The Filtration, Oxidation and Pressure Drop Characteristics of a Catalyzed Particulate Filter during Active Regeneration – A 1D Modeling Study

2009-04-20
2009-01-1274
Active regeneration of a catalyzed particulate filter (CPF) is affected by a number of parameters specifically particulate matter loading and inlet temperature. The MTU 1-D 2-Layer CPF model [1] was used to analyze these effects on the pressure drop, oxidation and filtration characteristics of a CPF during active regeneration. In addition, modeling results for post loading experiments were analyzed to understand the difference between loading a clean filter as compared to a partially regenerated filter. Experimental data obtained with a production Cummins regenerative particulate filter for loading, active regenerations and post loading experiments were used to calibrate the MTU 1-D 2-Layer CPF model. The model predicted results are compared with the experimental data and were analyzed to understand the CPF characteristics during active regeneration at 1.1, 2.2 and 4.1 g/L particulate matter (PM) loading and CPF inlet temperatures of 525, 550 and 600°C.
Technical Paper

Optimization for Shared-Autonomy in Automotive Swarm Environment

2009-04-20
2009-01-0166
The need for greater capacity in automotive transportation (in the midst of constrained resources) and the convergence of key technologies from multiple domains may eventually produce the emergence of a “swarm” concept of operations. The swarm, a collection of vehicles traveling at high speeds and in close proximity, will require management techniques to ensure safe, efficient, and reliable vehicle interactions. We propose a shared-autonomy approach in which the strengths of both human drivers and machines are employed in concert for this management. A fuzzy logic-based control implementation is combined with a genetic algorithm to select the shared-autonomy architecture and sensor capabilities that optimize swarm operations.
X