Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Differences in Pre- and Post-Converter Lambda Sensor Characteristics

The two characteristics of wide-range air/fuel ratio sensors when located in front of and behind a three-way catalytic converter are investigated. Input as well as output gas concentration measurements and sensor readouts are presented. Behind a new converter almost no oxygen can be measured for rich air/fuel ratios. The wide-range sensor's signal is sensitive to changes in the gas composition when keeping the air/fuel ratio constant at a rich value. Since the gas compositions up- and down-stream of the converter differ, the sensor signals are not identical for the same rich air/fuel ratio before and after the converter. The various diffusion coefficients of the exhaust gas species flowing through the porous coating of the sensor combinded with the different up- and downstream gas compositions are responsible for the different sensor characteristics.
Technical Paper

Wall-Wetting Parameters Over the Operating Region of a Sequential Fuel-Injected SI Engine

In modern engine control applications, there is a distinct trend towards model-based control schemes. There are various reasons for this trend: Physical models allow deeper insights compared to heuristic functions, controllers can be designed faster and more accurately, and the possibility of obtaining an automated application scheme for the final engine to be controlled is a significant advantage. Another reason is that if physical effects can be separated, higher order models can be applied for different subsystems. This is in contrast to heuristic functions where the determination of the various maps poses large problems and is thus only feasible for low order models. One of the most important parts of an engine management system is the air-to-fuel control. The catalytic converter requires the mean air-to-fuel ratio to be very accurate in order to reach its optimal conversion rate. Disturbances from the active carbon filter and other additional devices have to be compensated.
Technical Paper

SAE Clean Snowmobile Challenge 2003 Summary of Results

The Environmental Protection Agency (EPA) has published new emissions standards for snowmobiles, Federal Register 40 CFR, “Control of Emissions from Non-road Large Spark Ignition Engines and Recreational Engines (Marine and Land Based)”; Final Rule, Volume 67., No.217, November 8, 2002. These rules require a phase in of lower snowmobile emissions over the period of 2006 to 2012. In addition, the International Snowmobile Manufacturers' Association (ISMA) is developing new pass-by noise standards to replace the current wide-open throttle noise standard SAE J - 192 and J 1161. These new requirements set the stage for improvements in snowmobiles and form the basis for the Society of Automotive Engineers (SAE) Clean Snowmobile Challenge (CSC). SAE and Michigan Technological University (MTU) worked together, along with many other volunteers, to continue the SAE CSC, moving it from its original venue in Wyoming to Michigan.
Technical Paper

Vehicle Engine Aftertreatment System Simulation (VEASS) Model: Application to a Controls Design Strategy for Active Regeneration of a Catalyzed Particulate Filter

Heavy-duty diesel engine particulate matter (PM) emissions must be reduced from 0.1 to 0.01 grams per brake horsepower-hour by 2007 due to EPA regulations [1]. A catalyzed particulate filter (CPF) is used to capture PM in the exhaust stream, but as PM accumulates in the CPF, exhaust flow is restricted resulting in reduced horsepower and increased fuel consumption. PM must therefore be burned off, referred to as CPF regeneration. Unfortunately, nominal exhaust temperatures are not always high enough to cause stable self-regeneration when needed. One promising method for active CPF regeneration is to inject fuel into the exhaust stream upstream of an oxidation catalytic converter (OCC). The chemical energy released during the oxidation of the fuel in the OCC raises the exhaust temperature and allows regeneration.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Particulate Matter Emissions

The effects of an oxidation catalytic converter (OCC), an emulsified fuel, and their combined effects on particle number and volume concentrations compared to those obtained when using a basefuel were studied. Particle size and particulate emission measurements were conducted at three operating conditions; idle (850 rpm, 35 Nm), Mode 11 (1900 rpm, 277 Nm) and Mode 9 (1900 rpm, 831 Nm) of the EPA 13 mode cycle. The individual effects of the emulsified fuel and the OCC as well as their combined effects on particle number and volume concentrations were studied at two different particle size ranges; the nuclei (less than or equal to 50 nm) and accumulation (greater than 50 nm) modes. An OCC loaded with 10 g/ft3 platinum metal (OCC1) and a 20% emulsified fuel were used for this study and a notable influence on the particle size with respect to number and volume distributions was observed.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Emissions

A study was conducted to assess the effects of a water-diesel fuel emulsion with and without an oxidation catalytic converter (OCC) on steady-state heavy-duty diesel engine emissions. Two OCCs with different metal loading levels were used in this study. A 1988 Cummins L10-300 heavy-duty diesel engine was operated at the rated speed of 1900 rpm and at 75% and 25% load conditions (EPA modes 9 and 11 respectively) of the 13 mode steady-state test as well as at idle. Raw exhaust emissions' measurements included total hydrocarbons (HC), oxides of nitrogen (NOx) and nitric oxide (NO). Diluted exhaust measurements included total particulate matter (TPM) and its primary constituents, the soluble organic (SOF), sulfate (SO42-) and the carbonaceous solids (SOL) fractions. Vapor phase organic compounds (XOC) were also analyzed. The SOF and XOC samples were analyzed for selected polynuclear aromatic hydrocarbons (PAHs).