Refine Your Search

Topic

Author

Search Results

Technical Paper

Fuel Evaporation Parameter Identification during SI Cold Start

2001-03-05
2001-01-0552
The stochastic properties of continuous time model parameters obtained through discrete least squares estimation are examined. Particular attention is given to the application of estimating the fuel evaporation dynamics of a V-8 SI engine. The continuous time parameter distributions in this case are biased. The bias is shown to be a function of both measurement noise and sampling rate selection. Analysis and experimental results suggest that for each particular model, there is a corresponding optimum sampling rate. A bias compensation formula is proposed that improves the accuracy of least squares estimation without iterative techniques.
Technical Paper

Model Identification for the A/F Path of an SI Engine

1997-02-24
970612
Modern model-based control schemes and their application on different engines need mathematical models for the various dynamic subsystems of interest. Here, the fuel path of an SI engine is investigated. When the engine speed and the throttle angle are kept constant, the fuel path is excited only by the fuel injected. Taking the NO concentration of the exhaust gas as a measure for the air/fuel ratio, models are derived for the wall-wetting dynamics, the gas mixture, as well as for the air/fuel ratio sensor. When only the spark advance is excited, the gas flow dynamics can be studied. A very fast NO measurement device is used as reference. Its time constant is below the segment time of one single cylinder (180° crank angle for a 4-cylinder engine), therefore its dynamics are much faster than the time constants of the systems investigated. A model structure considering the muliplexing effects of the discrete operation of an engine is given for the fuel path of a BMW 1.8 liter engine.
Technical Paper

On-Line Identification of Time Delay in the Fuel Path of an SI Engine

1997-02-24
970613
The dynamics of the fuel-path subsystem of an SI engine, between fuel injection command signal and measured air-to-fuel ratio, is modeled approximately by a series connection of a first-order low-pass filter and a time delay element. The three parameters involved in this approximation, i.e., the time constant and the gain factor of the low-pass filter as well as the time delay, depend on the operating point of the engine. In order to design a gain-scheduled controller for the entire operating range of the engine, the parameters are identified for a number of operating points. For the automation of the parameter identification of all operating points desired, an on-line identification based on the recursive least-squares method is used. The algorithm for the decision of whether to increase or decrease the integer part of the current estimated time delay, which is a multiple of the sampling period, is based on an estimation of the fractional part of the time delay at each point.
Technical Paper

A New Model for Fuel Supply Dynamics in an SI Engine

1994-03-01
940208
In this paper we introduce an improved model for the fuel supply dynamics in an SI engine. First, we briefly investigate all the thermodynamic phenomena which are assumed to have a significant impact on fuel flow into the cylinder (i.e., fuel atomization, droplet decay, wall-wetting, film evaporation, and mixture flow back). This theoretical analysis results in a basic set of dynamic equations. Unfortunately, these equations are not convenient to use for control purposes. Therefore, we proceed to a simplified formulation. Several unknown parameters remain, describing phenomena which are difficult to quantify, such as heat and material transfer characteristics. These parameters are subject to operating conditions and are not discussed further. In order to validate the model dynamics, we refer to frequency and step response measurements performed on a 4-cylinder, 1.8 liter BMW engine with sequential fuel injection.
Technical Paper

Model-Based Adaptive Fuel Control in an SI Engine

1994-03-01
940374
This paper introduces a model-based adaptive controller designed to compensate mixture ratio dynamics in an SI engine. In the basic model the combined dynamics of wall-wetting and oxygen sensor have to be considered because the only information about process dynamics originates from measuring exhaust λ. The controller design is based on the principles of indirect Model Reference Adaptive Control (MRAC). The indirect approach connotes that explicit identification of the system parameters is required for the determination of the controller parameters. Due to nonlinearities and delays inherent in the process dynamics, an adaptive extended Kalman filter is used for identification purposes. The Kalman filter method has already been described in detail within an earlier paper [1]. It proves to be ideally suited to deal with nonlinear identification problems. The estimated parameters are further used to tune an adaptive observer for wall-wetting dynamics.
Technical Paper

Controlling a CVT-Equipped Hybrid Car

1995-02-01
950492
In order to achieve maximum fuel efficiency, the SI engine of the new CVT-equipped hybrid car developed at the Swiss Federal Institute of Technology (ETH) is operated in a high power regime (such as highway driving at speeds above 120 km/h) with its throttle in its 100-percent open position. Whenever an engine power which exceeds 11 kWs is demanded, there exists an equilibrium point between the engine torque and the torque induced by the drag. Any regulation of the vehicle speed has to be performed by altering the gear ratio of the CVT. If any acceleration is required, it is necessary to increase the engine speed. This requires that the vehicle has to be slowed down for a certain short period of time. If this characteristic behaviour of the car (which is typical for a non-minimum-phase system) is not accepted by a driver who demands and expects immediate acceleration, it might lead to critical situations.
Technical Paper

The Influence of Pneumatic Atomization on the Lean Limit and IMEP

1989-02-01
890431
Lean limit characteristics of a pneumatic port fuel injection system is compared to a conventional port fuel injection system. The lean limit was based on the measured peak pressure. Those cycles with peak pressures greater than 105 % of the peak pressure for a nonfiring cycle were counted. Experimental data suggests that there are differences in lean limit characteristics between the two systems studied, indicating that fuel preparation processes in these systems influence the lean limit behaviors. Lean limits are generally richer for pneumatic fuel injection than those for conventional fuel injection. At richer fuel-to-air ratios the pneumatic injector usually resulted in higher torques. A simple model to estimate the evaporation occurring in the inlet manifold provided an explanation for the observed data.
Technical Paper

A Turbocharged Spark Ignition Engine with Low Exhaust Emissions and Improved Fuel Economy

1973-02-01
730633
Turbocharging, in addition to increasing an engine's power output, can be effectively used to maintain exhaust emission levels while improving fuel economy. This paper presents the emission and performance results obtained from a turbocharged multicylinder spark ignition engine with thermal reactors and exhaust gas recirculation (EGR) operated at steady-state, part-load conditions for four engine speeds. When comparing a turbocharged engine to a larger displacement naturally aspirated engine of equal power output, the emissions expressed in grams per mile were relatively unchanged both with and without EGR. However, turbocharging provided an average of 20% improvement in fuel economy both with and without EGR. When comparing the turbocharged and nonturbocharged versions of the same engine without EGR at a given load and speed, turbocharging increased the hydrocarbon (HC) and carbon monoxide (CO) emissions and decreased oxides of nitrogen (NOx) emissions.
Technical Paper

Correlation of Air Fuel Ratio with Ionization Signal Metrics in a Multicylinder Spark Ignited Engine

2009-04-20
2009-01-0584
Accurate individual cylinder Air Fuel Ratio (AFR) feedback provide opportunities for improved engine performance and reduced emissions in spark ignition engines. One potential measurement for individual cylinder AFR is in-cylinder ionization measured by employing the spark plug as a sensor. A number of previous investigations have studied correlations of the ionization signal with AFR and shown promising results. However the studies have typically been limited to single cylinders under restricted operating conditions. This investigation analyzes and characterizes the ionization signals in correlation to individual AFR values obtained from wide-band electrochemical oxygen sensors located in the exhaust runners of each cylinder. Experimental studies for this research were conducted on a 2.0L inline 4 cylinder spark ignited engine with dual independent variable cam phasing and an intake charge motion control valve.
Technical Paper

Numerical Investigation of Spark Ignition Events in Lean and Dilute Methane/Air Mixtures Using a Detailed Energy Deposition Model

2016-04-05
2016-01-0609
It is beneficial but challenging to operate spark-ignition engines under highly lean and dilute conditions. The unstable ignition behavior can result in downgraded combustion performance in engine cylinders. Numerical approach is serving as a promising tool to identify the ignition requirements by providing insight into the complex physical/chemical phenomena. An effort to simulate the early stage of flame kernel initiation in lean and dilute fuel/air mixture has been made and discussed in this paper. The simulations are set to validate against laboratory results of spark ignition behavior in a constant volume combustion vessel. In order to present a practical as well as comprehensive ignition model, the simulations are performed by taking into consideration the discharge circuit analysis, the detailed reaction mechanism, and local heat transfer between the flame kernel and spark plug.
Technical Paper

Carbureted SI Engine Air Flow Measurements

2016-04-05
2016-01-1082
Measurement of internal combustion engine air flow is challenging due to the required modification of the intake system and subsequent change in the air flow pattern. In this paper, various surge tank volumes were investigated to improve the accuracy of measuring air flow rate into a 674-cm3, four-stroke, liquid-cooled, internal combustion engine. According to the experimental results, when the venturi meter is used to measure the intake air flow rate, an air surge tank is required to be installed downstream of the venturi to smoothen the air flow. Moreover, test results revealed that increasing air surge tank volume beyond a limit could have a negative effect on the engine performance parameters especially in carbureted engines where controlling AFR is difficult. Although the air flow rate into the engine changed with increasing tank volume, the air-fuel ratio was leaner for smaller tank volumes.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - AFR and EGR Dilution Effects

2015-09-29
2015-01-2808
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and reduce harmful emissions while maintaining durability. Transforming part of the vehicle fleet to NG is a path to reduce dependence on crude oil. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for MD and HD engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding excessive premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

Impact of Ignition Energy Phasing and Spark Gap on Combustion in a Homogenous Direct Injection Gasoline SI Engine Near the EGR Limit

2013-04-08
2013-01-1630
For spark-ignition gasoline engines operating under the wide speed and load conditions required for light duty vehicles, ignition quality limits the ability to minimize fuel consumption and NOx emissions via dilution under light and part load conditions. In addition, during transients including tip-outs, high levels of dilution can occur for multiple combustion events before either the external exhaust gas can be adjusted and cleared from the intake or cam phasing can be adjusted for correct internal dilution. Further improvement and a thorough understanding of the impact of the ignition system on combustion near the dilution limit will enable reduced fuel consumption and robust transient operation. To determine and isolate the effects of multiple parameters, a variable output ignition system (VOIS) was developed and tested on a 3.5L turbocharged V6 homogeneous charge direct-injection gasoline engine with two spark plug gaps and three ignition settings.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Nozzle Included Angle Effects

2017-03-28
2017-01-0781
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
Technical Paper

Air Charge and Residual Gas Fraction Estimation for a Spark-Ignition Engine Using In-Cylinder Pressure

2017-03-28
2017-01-0527
An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
Technical Paper

Investigation of Combustion Knock Distribution in a Boosted Methane-Gasoline Blended Fueled SI Engine

2018-04-03
2018-01-0215
The characteristics of combustion knock metrics over a number of engine cycles can be an essential reference for knock detection and control in internal combustion engines. In a Spark-Ignition (SI) engine, the stochastic nature of combustion knock has been shown to follow a log-normal distribution. However, this has been derived from experiments done with gasoline only and applicability of log-normal distribution to dual-fuel combustion knock has not been explored. To evaluate the effectiveness and accuracy of log-normal distributed knock model for methane-gasoline blended fuel, a sweep of methane-gasoline blend ratio was conducted at two different engine speeds. Experimental investigation was conducted on a single cylinder prototype SI engine equipped with two fuel systems: a direct injection (DI) system for gasoline and a port fuel injection (PFI) system for methane.
Technical Paper

Examination of Factors Impacting Unaccounted Fuel Post GDI Fuel Injector Closing

2018-04-03
2018-01-0300
The characteristics of gasoline sprayed directly into combustion chambers are of critical importance to engine out emissions and combustion system development. The optimization of the spray characteristics to match the in-cylinder flow field, chamber geometry, and spark location is a vital tasks during the development of an engine combustion strategy. Furthermore, the presence of liquid fuel during combustion in Spark-Ignition (SI) engines causes increased hydro-carbon (HC) emissions. Euro 6, LEVIII, and US Tier 3 emissions regulations reduce the allowable particulate mass significantly from the previous standards. LEVIII standards reduce the acceptable particulate emission to 1 mg/mile. A good DISI strategy vaporizes the correct amount of fuel just in time for optimal power output with minimal emissions. The opening and closing phases of DISI injectors are crucial to this task as the spray produces larger droplets during both theses phases.
Technical Paper

SAE Clean Snowmobile Challenge 2003 Summary of Results

2005-10-24
2005-01-3683
The Environmental Protection Agency (EPA) has published new emissions standards for snowmobiles, Federal Register 40 CFR, “Control of Emissions from Non-road Large Spark Ignition Engines and Recreational Engines (Marine and Land Based)”; Final Rule, Volume 67., No.217, November 8, 2002. These rules require a phase in of lower snowmobile emissions over the period of 2006 to 2012. In addition, the International Snowmobile Manufacturers' Association (ISMA) is developing new pass-by noise standards to replace the current wide-open throttle noise standard SAE J - 192 and J 1161. These new requirements set the stage for improvements in snowmobiles and form the basis for the Society of Automotive Engineers (SAE) Clean Snowmobile Challenge (CSC). SAE and Michigan Technological University (MTU) worked together, along with many other volunteers, to continue the SAE CSC, moving it from its original venue in Wyoming to Michigan.
Technical Paper

Spray Characterization in a DISI Engine During Cold Start: (1) Imaging Investigation

2006-04-03
2006-01-1004
Spray angle and penetration length data were taken under cold start conditions for a Direct Injection Spark Ignition engine to investigate the effect of transient conditions on spray development. The results show that during cold start, spray development depends primarily on fuel pressure, followed by Manifold Absolute Pressure (MAP). Injection frequency had little effect on spray development. The spray for this single hole, pressure-swirl fuel injector was characterized using high speed imaging. The fuel spray was characterized by three different regimes. Regime 1 comprised fuel pressures from 6 - 13 bar, MAPs from 0.7 - 1 bar, and was characterized by a large pre-spray along with large drop sizes. The spray angle and penetration lengths were comparatively small. Regime 2 comprised fuel pressures from 30 - 39 bar and MAPs from 0.51 - 0.54 bar. A large pre-spray and large drop sizes were still present but reduced compared to Regime 1.
Technical Paper

Analysis of Combustion Knock Metrics in Spark-Ignition Engines

2006-04-03
2006-01-0400
Combustion knock detection and control in internal combustion engines continues to be an important feature in engine management systems. In spark-ignition engine applications, the frequency of occurrence of combustion knock and its intensity are controlled through a closed-looped feedback system to maintain knock at levels that do not cause engine damage or objectionable audible noise. Many methods for determination of the feedback signal for combustion knock in spark-ignition internal combustion engines have been employed with the most common technique being measurement of engine vibration using an accelerometer. With this technique single or multiple piezoelectric accelerometers are mounted on the engine and vibrations resulting from combustion knock and other sources are converted to electrical signals. These signals are input to the engine control unit and are processed to determine the signal strength during a period of crank-angle when combustion knock is expected.
X