Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Interactions Between the Materials in the Tube-Fin-Joints in Brazed Copper-Brass Heat Exchangers

2001-05-14
2001-01-1726
The paper describes the interactions between the filler material and the copper fin in the joint in the CuproBraze® process. Due to the influence of the filler metal, part of the copper fin is alloyed. The influence of the time above the melting point of the filler material and of the maximum process-temperature were investigated. It was found that the time has the strongest influence. After laboratory tests and production scale tests a brazing window for the process has been established. That can be used to set up brazing cycles for different kind of furnaces. From a number of wind tunnel tests it has been confirmed that when the brazing is done within this window the alloying of the fin is limited that it does not have practical influence on the thermal performance of the heat exchanger.
Technical Paper

CuproBraze Manufacturing - Plant Design - Lock Seam Tubes

2001-03-05
2001-01-1349
This is a short presentation over the differences between soft soldering and the brazing, CuproBraze®, manufacturing techniques. Additional process equipment is described and production principles are explained.
Technical Paper

OCP - Materials

2001-03-05
2001-01-1022
Outokumpu Copper Strip AB has developed Copper alloys for use in heat exchanger applications where high temperature joining is employed. The alloys are basically low alloyed Copper and Brass. These alloys are particularly suitable for the brazing of Copper and Brass heat exchangers. For joining purposes an alloy has been developed as brazing filler material. That alloy has properties that give high strength at comparatively low brazing temperatures. All these alloys are being used in the CuproBraze process of manufacturing copper and brass heat exchangers. This paper will explain the properties of these materials and their use.
Technical Paper

A New Multi-point Active Drawbead Forming Die: Model Development for Process Optimization

1998-02-01
980076
A new press/die system for restraining force control has been developed in order to facilitate an increased level of process control in sheet metal forming. The press features a built-in system for controlling drawbead penetration in real time. The die has local force transducers built into the draw radius of the lower tooling. These sensors are designed to give process information useful for the drawbead control. This paper focuses on developing models of the drawbead actuators and the die shoulder sensors. The actuator model is useful for developing optimal control methods. The sensor characterization is necessary in order to develop a relationship between the raw sensor outputs and a definitive process characteristic such as drawbead restraining force (DBRF). Closed loop control of local specific punch force is demonstrated using the die shoulder sensor and a PID controller developed off-line with the actuator model.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part I - Methodology and Scenario Definition

2013-04-08
2013-01-1144
The U.S. Renewable Fuel Standard (RFS2) requires an increase in the use of advanced biofuels up to 36 billion gallons by 2022. Longer chain alcohols, in addition to cellulosic ethanol and synthetic biofuels, could be used to meet this demand while adhering to the RFS2 corn-based ethanol limitation. Higher carbon number alcohols can be utilized to improve the energy content, knock resistance, and/or petroleum displacement of gasoline-alcohol blends compared to traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part I of this paper focuses on the development of scenarios by which to compare higher alcohol fuel blends to traditional ethanol blends. It also details the implementation of fuel property prediction methods adapted from literature. Possible combinations of eight alcohols mixed with a gasoline blendstock were calculated and the properties of the theoretical fuel blends were predicted.
Technical Paper

Numerical Simulation of Unsteady Natural Convection in a Simplified Engine Bay Enclosure under Soak Conditions

2014-04-01
2014-01-0651
At the onset of soak, air and surface temperatures in an engine bay enclosure are elevated since temperature of heat sources are high while convective cooling is sharply reduced as a result of airflow being shut off from the inlet grilles of the vehicle leading to temperature spikes. Accurate simulation of this important thermal and flow regime that is natural convection driven, highly transient and complex is therefore very important. In this investigation, we simulate flow in the engine bay at the onset of soak with fixed thermal boundary conditions where the geometries representing the engine bay and components are simplified. Good agreement was observed with detailed experimental data available in references for both velocities and temperatures.
Technical Paper

Characterization of the Three Phase Catalytic Wet Oxidation Process in the International Space Station (ISS) Water Processor Assembly

2000-07-10
2000-01-2252
A three phase catalytic mathematical model was developed for analysis and optimization of the volatile reactor assembly (VRA) used on International Space Station (ISS) Water Processor. The Langmuir-Hinshelwood Hougen-Watson (L-H) expression was used to describe the surface reaction rate. Small column experiments were used to determine the L-H rate parameters. The test components used in the experiments were acetic acid, acetone, ethanol, 1-propanol, 2-propanol and propionic acid. These compounds are the most prevalent ones found in the influent to the VRA reactor. The VRA model was able to predict performance of small column data and experimental data from the VRA flight experiment.
Technical Paper

Environmentally Driven Development of New Heat Exchanger Materials

2006-04-03
2006-01-0727
Due to coming more stringent legislation regarding emission of diesel engines, material considerations in heat exchangers will be a topic. This paper describes a method to compare the durability of tube to header joints in brazed, welded or soldered execution at ambient and elevated temperatures. Instead of pressure cycle test a complete heat exchanger only one tube to header joint is tested at a time.. This method could initially be used for selection of materials and joining methods with respect to durability. Calculations are presented to show the analogy between the described test method and internal pressure pulsation. Examples of measured results are presented. By combining different tube and braze filler materials comparing studies can be done.
Technical Paper

Reduction of the Environmental Impact of Essential Manufacturing Processes

1999-03-01
1999-01-0355
The drive of Design for the Environment is to reduce the environmental impact of both design and manufacturing processes. The most frequent method recommended is to substitute better materials and processes. However, there are processes that will continue to have undesirable environmental impacts due to the lack of knowledge of better methods. These processes are critical to manufacturing of products and can not be eliminated. All possible substitutions appear to have worse impacts. This paper explores modeling these processes and imposing a control method which permits an improvement of the environmental impact.
Technical Paper

Pressure-Swirl Atomization in the Near Field

1999-03-01
1999-01-0496
To model sprays from pressure-swirl atomizers, the connection between the injector and the downstream spray must be considered. A new model for pressure-swirl atomizers is presented which assumes little knowledge of the internal details of the injector, but instead uses available observations of external spray characteristics. First, a correlation for the exit velocity at the injector exit is used to define the liquid film thickness. Next, the film must be modeled as it becomes a thin, liquid sheet and breaks up, forming ligaments and droplets. A linearized instability analysis of the breakup of a viscous, liquid sheet is used as part of the spray boundary condition. The spray angle is estimated from spray photographs and patternator data. A mass averaged spray angle is calculated from the patternator data and used in some of the calculations.
X