Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

In-Situ Measurement of Transmission Efficiency in Vehicles

SAE Recommended Practice J1540 [1] specifies test procedures to map transmission efficiency and parasitic losses in a manual transmission. The procedure comprises two parts. The first compares input and output torque over a range of speed to determine efficiency. The second measures parasitic losses at zero input torque over a range of speed. As specified in J1540, efficiency of transmissions is routinely measured on a test-stand under steady torque and speed [2] [3]. While such testing is useful to compare different transmissions, it is unclear whether the “in-use” efficiency of a given transmission is the same as that measured on the stand. A vehicular transmission is usually mated to a reciprocating combustion engine producing significant torque and speed fluctuations at the crankshaft. It is thus a valid question whether the efficiency under such pulsating conditions is the same as that under steady conditions.
Technical Paper

Estimation of Intake Oxygen Mass Fraction for Transient Control of EGR Engines

Cooled Exhaust Gas Recirculation (EGR) technology provides significant benefits such as better cycle efficiency, knock tolerance and lower NOx/PM emissions. However, EGR dilution also poses challenges in terms of combustion stability, power density and control. Conventional control schemes for EGR engines rely on a differential pressure sensor combined with an orifice flow model to estimate EGR flow rate. While EGR rate is an important quantity, intake O2 mass fraction may be a better indication of EGR, capturing quantity as well as “quality” of EGR. SwRI has successfully used intake O2 mass fraction as a controlled state to manage several types of EGR engines - dual loop EGR diesel engines, low pressure loop /dedicated EGR (D-EGR) gasoline engines as well as dual fuel engines. Several suppliers are currently developing intake O2 sensors but they typically suffer from limited accuracy, response time and reliability. Also, addition of a new sensor implies increased production costs.
Technical Paper

Transient Control of a Dedicated EGR Engine

Southwest Research Institute (SwRI) has successfully demonstrated the cooled EGR concept via the High Efficiency Dilute Gasoline Engine (HEDGE) consortium. Dilution of intake charge provides three significant benefits - (1) Better Cycle Efficiency (2) Knock Resistance and (3) Lower NOx/PM Emissions. But EGR dilution also poses challenges in terms of combustion stability, condensation and power density. The Dedicated EGR (D-EGR) concept brings back some of the stability lost due to EGR dilution by introducing reformates such as CO and H2 into the intake charge. Control of air, EGR, fuel, and ignition remains a challenge to realizing the aforementioned benefits without sacrificing performance and drivability. This paper addresses the DEGR solution from a controls standpoint. SwRI has been developing a unified framework for controlling a generic combustion engine (gasoline, diesel, dual-fuel natural gas etc.).
Technical Paper

In-Situ Measurement of Holistic Powertrain Efficiency in Vehicles

Conventional methods for determining automotive powertrain efficiency include (1) component-level testing, such as engine dynamometer, transmission stand or axle stand testing, (2) simulations based on component level test data and (3) vehicle-level testing, such as chassis dynamometer or on-road testing. This paper focuses on vehicle-level testing to show where energy is lost throughout a complete vehicle powertrain. This approach captures all physical effects of a vehicle driving in real-world conditions, including torque converter lockup strategies, transmission shifting, engine control strategies and inherent mechanical efficiency of the components. A modern rear-wheel drive light duty pickup truck was instrumented and tested on a chassis dynamometer. Power was measured at the engine crankshaft output, the rear driveshaft and at the dynamometer.
Technical Paper

Investigation of Alternative Combustion, Airflow-Dominant Control and Aftertreatment System for Clean Diesel Vehicles

A new diesel engine system adopting alternative combustion with rich and near rich combustion, and an airflow-dominant control system for precise combustion control was used with a 4-way catalyst system with LNT (lean NOx trap) to achieve Tier II Bin 5 on a 2.2L TDI diesel engine. The study included catalyst temperature control, NOx regeneration, desulfation, and PM oxidation with and without post injection. Using a mass-produced lean burn gasoline LNT with 60,000 mile equivalent aging, compliance to Tier II Bin 5 emissions was confirmed for the US06 and FTP75 test cycles with low NVH, minor fuel penalty and smooth transient operation.
Technical Paper


An airflow-dominant control system was developed to provide precise engine and exhaust treatment control with low air fuel ratio alternative combustion. The main elements of the control logic include a real-time state observer for in-cylinder oxygen mass estimation, a simplified packaging scheme for all air-handling and fueling parameters, a finite state machine for control mode switching, combustion control models to maintain robust alternative combustion during transients, and smooth rich/lean switching during lean NOx trap (LNT) regeneration without post injection. The control logic was evaluated on a passenger car equipped with a 4-way catalyst system with LNT and was instrumental in achieving US Tier II Bin 5 emission targets with good drivability and low NVH.
Journal Article

Cycle-Average Heavy-Duty Engine Test Procedure for Full Vehicle Certification - Numerical Algorithms for Interpreting Cycle-Average Fuel Maps

In June of 2015, the Environmental Protection Agency and the National Highway Traffic Safety Administration issued a Notice of Proposed Rulemaking to further reduce greenhouse gas emissions and improve the fuel efficiency of medium- and heavy-duty vehicles. The agencies proposed that vehicle manufacturers would certify vehicles to the standards by using the agencies’ Greenhouse Gas Emission Model (GEM). The agencies also proposed a steady-state engine test procedure for generating GEM inputs to represent the vehicle’s engine performance. In the proposal the agencies also requested comment on an alternative engine test procedure, the details of which were published in two separate 2015 SAE Technical Papers [1, 2]. As an alternative to the proposed steady-state engine test procedure, these papers presented a cycle-average test procedure.
Journal Article

Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions - Part 2

The diesel engine can be an effective solution to meet future greenhouse gas and fuel economy standards, especially for larger segment vehicles. However, a key challenge facing the diesel is the upcoming LEV III and Tier 3 emission standards which will require significant reductions in hydrocarbon (HC) and oxides of nitrogen (NOx) emissions. The challenge stems from the fact that diesel exhaust temperatures are much lower than gasoline engines, so the time required to achieve effective emissions control after a cold-start with typical aftertreatment devices is considerably longer. To address this challenge, a novel diesel cold-start emission control strategy was investigated on a 2L class diesel engine. This strategy combines several technologies to reduce tailpipe HC and NOx emissions before the start of the second hill of the FTP75. The technologies include both engine tuning and aftertreatment changes.
Technical Paper

Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles

A new generation of vehicle dynamics and powertrain control technologies are being developed to leverage information streams enabled via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) connectivity [1, 2, 3, 4, 5]. While algorithms that use these connected information streams to enable improvements in energy efficiency are being studied in detail, methodologies to quantify and analyze these improvements on a vehicle have not yet been explored fully. A procedure to test and accurately measure energy-consumption benefits of a connected and automated vehicle (CAV) is presented. The first part of the test methodology enables testing in a controlled environment. A traffic simulator is built to model traffic flow in Fort Worth, Texas with sufficient accuracy. The benefits of a traffic simulator are two-fold: (1) generation of repeatable traffic scenarios and (2) evaluation of the robustness of control algorithms by introducing disturbances.