Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Investigation of Urea Derived Deposits Composition in SCR Systems

2016-10-17
2016-01-2327
Ideally, complete decomposition of urea should produce only two products in active Selective Catalytic Reduction (SCR) systems: ammonia and carbon dioxide. In reality, urea decomposition reaction is a two-step process that includes the formation of ammonia and isocyanic acid as intermediate products via thermolysis. Being highly reactive, isocyanic acid can initiate the formation of larger molecular weight compounds such as cyanuric acid (CYN), biuret (BIU), melamine (MEL), ammeline (AML), ammelide (AMD), and dicyandimide (DICY). These compounds can be responsible for the formation of deposits on the walls of the decomposition reactor in urea SCR systems. Composition of these deposits varies with temperature exposure, and under certain conditions can create oligomers that are difficult to remove from exhaust pipes. Deposits can affect efficiency of the urea decomposition, and if large enough, can inhibit the exhaust flow and negatively impact ammonia distribution on the SCR catalyst.
Technical Paper

Investigation of Urea Derived Deposits Composition in SCR Systems and Their Potential Effect on Overall PM Emissions

2016-04-05
2016-01-0989
Ideally, complete thermal decomposition of urea should produce only two products in active Selective Catalytic Reduction (SCR) systems: ammonia and carbon dioxide. In reality, urea thermal decomposition reaction includes the formation of isocyanic acid as an intermediate product. Being highly reactive, isocyanic acid can initiate the formation of larger molecular weight compounds such as cyanuric acid, biuret, melamine, ammeline, ammelide, and dicyandimide [1,2,3,4]. These compounds can be responsible for the formation of deposits on the walls of the decomposition reactor in urea SCR systems. Composition of these deposits varies with temperature exposure, and under certain conditions, can create oligomers such as melam, melem, and melon [5, 6] that are difficult to remove from exhaust systems. Deposits can affect the efficiency of the urea decomposition, and if large enough, can inhibit the exhaust flow.
Technical Paper

Deposit Reduction in SCR Aftertreatment Systems by Addition of Ti-Based Coordination Complex to UWS

2019-04-02
2019-01-0313
Formation of urea-derived deposits in selective catalytic reduction (SCR) aftertreatment systems continues to be problematic at temperatures at and below 215 °C. Several consequences of deposit formation include: NOx and NH3 slip, exhaust flow maldistribution, increased engine backpressure, and corrosion of aftertreatment components. Numerous methods have been developed to reduce deposit formation, but to date, there has been no solution for continuous low-temperature dosing of Urea-Water Solution (UWS). This manuscript presents a novel methodology for reducing low-temperature deposit formation in SCR aftertreatment systems. The methodology described herein involves incorporation and dissolution of an HNCO hydrolysis catalyst directly into the UWS. HNCO is a transient species formed by the thermolysis of urea upon injection of UWS into the aftertreatment system.
Technical Paper

Oil Consumption Pathway Impact on SCR-on-Filter Functional Performance and Lubricant Derived Ash Characteristics

2021-04-06
2021-01-0578
SCR-on-filter, or SCRoF, is an emerging technology for different market segments and vehicle applications. The technology enables simultaneous particulate matter trapping and NOX reduction, and provides thermal management and aftertreatment packaging benefits. However, there is little information detailing the lubricant derived exposure effects on functional SCR performance. A study was conducted to evaluate the impact of various oil consumption pathways on a light duty DOC and SCRoF aftertreatment system. This aftertreatment system was aged utilizing an engine test bench modified to enable increased oil consumption rates via three unique oil consumption pathways. The components were characterized for functional SCR performance, ash morphology, and ash deposition characteristics. This included utilizing techniques, such as SEM / EDS, to evaluate the ash structures and quantify the ash elemental composition.
Technical Paper

Evaluation of Indrio’s Ammonia Sensor using a Diesel Fuel Based Burner Platform

2023-04-11
2023-01-0383
This program involved the detailed evaluation of a novel laser-based in-exhaust ammonia sensor using a diesel fuel-based burner platform integrated with an ammonia injection system. Test matrix included both steady-state modes and transient operation of the burner platform. Steady-state performance evaluation included tests that examined impact of exhaust gas temperature, gas velocity and ammonia levels on sensor response. Furthermore, cross sensitivity of the sensor was examined at different levels of NOX and water vapor. Transient tests included simulation of the FTP test cycles at different ammonia and NOX levels. A Fourier transform infrared (FTIR) spectrometer as well as NIST traceable ammonia gas bottles (introduced into the exhaust stream via a calibrated flow controller) served as references for ammonia measurement.
Technical Paper

Post-Mortem Analysis of DAAAC and Conventionally Aged Aftertreatment Systems

2023-10-31
2023-01-1656
Upcoming regulations from CARB and EPA will require diesel engine manufacturers to validate aftertreatment durability with full useful life aged components. To this end, the Diesel Aftertreatment Accelerated Aging Cycle (DAAAC) protocol was developed to accelerate aftertreatment aging by accounting for hydrothermal aging, sulfur, and oil poisoning deterioration mechanisms. Two aftertreatment systems aged with the DAAAC protocol, one on an engine and the other on a burner system, were directly compared to a reference system that was aged to full useful life using conventional service accumulation. After on-engine emission testing of the fully aged components, DOC and SCR catalyst samples were extracted from the aftertreatment systems to compare the elemental distribution of contaminants between systems. In addition, benchtop reactor testing was conducted to measure differences in catalyst performance.
X