Refine Your Search

Topic

Search Results

Video

SCR Deactivation Kinetics for Model-Based Control and Accelerated Aging Applications

2012-06-18
Selective Catalytic Reduction (SCR) catalysts are used to reduce NOx emissions from internal combustion engines in a variety of applications [1,2,3,4]. Southwest Research Institute (SwRI) performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and a Fe-zeolite formulation. This work describes NH3 storage capacity measurement data as a function of aging time and temperature. Addressing one objective of the work, these data can be used in model-based control algorithms to calculate the current NH3 storage capacity of an SCR catalyst operating in the field, based on time and temperature history. The model-based control then uses the calculated value for effective DEF control and prevention of excessive NH3 slip. Addressing a second objective of the work, accelerated thermal aging of SCR catalysts may be achieved by elevating temperatures above normal operating temperatures.
Video

SCR Deactivation Study for OBD Applications

2012-06-18
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications [1,2,3,4]. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH3) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH3 transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Video

Brief Investigation of SCR High Temperature N2O Production

2012-06-18
Nitrous Oxide (N2O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 [1,2] (298-310 times more potent than carbon dioxide (CO2)). As a result, any aftertreatment system that generates N2O must be well understood to be used effectively. Under low temperature conditions, N2O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N2O formed by the thermal decomposition of ammonium nitrate [3]. Ammonium nitrate and N2O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO2)[4]. This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO2 ratio above 1. However, N2O has also been observed at relatively high temperatures, in the region of 500°C.
Technical Paper

Preparation and Testing of an Electric Competition Vehicle

1991-08-01
911684
A Dodge Omni electric car was prepared for competition in an electric “stock car” 2-hour endurance event: the inaugural Solar and Electric 500 Race, April 7, 1991. This entry utilized a series-wound, direct-current 21-hp electric motor controlled by an SCR frequency and pulse width modulator. Two types of lead-acid batteries were evaluated and the final configuration was a set of 16 (6-volt each) deep-cycle units. Preparation involved weight and friction reduction; suspension modification; load, charge and temperature instrumentaltion; and electrical interlock and collision safety systems. Vehicle testing totalled 15 hours of operation. Ranges observed in testing with the final configuration were from 30 to 52 miles for loads of 175 to 90 amperes. These were nearly constant, continuous discharge cycles. The track qualifying speed (64mph) was near the 68 mph record set by the DEMI Honda at the event on the one-mile track.
Technical Paper

Solid Particle Number and Ash Emissions from Heavy-Duty Natural Gas and Diesel w/SCRF Engines

2018-04-03
2018-01-0362
Solid and metallic ash particle number (PN) and particulate matter (PM) mass emission measurements were performed on a heavy-duty (HD) on-highway diesel engine and a compressed natural gas (CNG) engine. Measurements were conducted under transient engine operation that included the FTP, WHTC and RMC. Both engines were calibrated to meet CARB ultra low NOX emission target of 0.02 g/hp-hr, a 90% reduction from current emissions limit. The HD diesel engine final exhaust configuration included a number of aftertreatement sub-systems in addition to a selective catalytic reduction filter (SCRF). The stoichiometric CNG engine final configuration included a closed coupled Three Way Catalyst (ccTWC) and an under floor TWC (ufTWC). The aftertreatment systems for both engines were aged for a full useful life (FUL) of 435,000 miles, prior to emissions testing. PM mass emissions from both engines were comparable and well below the US EPA emissions standard.
Technical Paper

Identifying Limiters to Low Temperature Catalyst Activity

2015-04-14
2015-01-1025
The drive to more fuel efficient vehicles is underway, with passenger car targets of 54.5 mpg fleet average by 2025. Improving engine efficiency means reducing losses such as the heat lost in the exhaust gases. However, reducing exhaust temperature makes it harder for emissions control catalysts to function because they require elevated temperatures to be active. Addressing this conundrum was the focus of the work performed. The primary objective of this work was to identify low temperature limiters for a variety of catalyst aftertreatment types. The ultimate goal is to reduce catalyst light-off temperatures, and the knowledge needed is an understanding of what prevents a catalyst from lighting off, why, and how it may be mitigated. Collectively these are referred to here as low temperature limiters to catalyst activity.
Technical Paper

Development of a Novel Device to Improve Urea Evaporation, Mixing and Distribution to Enhance SCR Performance

2010-04-12
2010-01-1185
A novel urea evaporation and mixing device has been developed to improve the overall performance of a urea-SCR system. The device was tested with a MY2007 Cummins ISB 6.7L diesel engine equipped with an SCR aftertreatment system. Test results show that the device effectively improved the overall NO conversion efficiency of the SCR catalyst over both steady-state and transient engine operating conditions, while NH₃ slip from the catalyst decreased.
Technical Paper

Adequacy of Reduced Order Models for Model-Based Control in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-0617
Model-based control strategies are important for meeting the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-SCR catalysts. To be implementable on the vehicle, the models should capture the essential behavior of the system, while not being computationally intensive. This paper discusses the adequacy of two different reduced order SCR catalyst models and compares their performance with a higher order model. The higher order model assumes that the catalyst has both diffusion and reaction kinetics, whereas the reduced order models contain only reaction kinetics. After describing each model, its parameter identification and model validation based on experiments on a Navistar I6 7.6L engine are presented. The adequacy of reduced order models is demonstrated by comparing the NO, NO2 and NH3 concentrations predicted by the models to their concentrations from the test data.
Technical Paper

Effects of Various Model Parameters in the Simulation of a Diesel SCR System

2012-04-16
2012-01-1297
A Selective Catalytic Reduction (SCR) system is a simple solution to mitigate high concentration of nitrogen oxides from tail pipe emissions using ammonia as catalyst. In recent years, implementation of stringent emission standards for diesel exhaust made the SCR system even more lucrative aftertreatment solution for diesel engine manufacturer due to its well established reaction mechanism and lower initial cost involved compared to other available options. Nitrogen oxides reduction efficiency and ammonia slip are two main parameters that affects SCR system performance. Therefore, primary design objective of an efficient SCR system is to enhance reduction of nitrogen oxides and control ammonia slip. Both these factors can be improved by having a uniform mixture of ammonia at the SCR inlet. In this mathematical simulation, various parameters that affect accuracy in predicting the uniformity of mixture at the SCR inlet have been documented.
Technical Paper

SCR Deactivation Kinetics for Model-Based Control and Accelerated Aging Applications

2012-04-16
2012-01-1077
Selective Catalytic Reduction (SCR) catalysts are used to reduce NOx emissions from internal combustion engines in a variety of applications. Southwest Research Institute (SwRI) performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO₂ formulation, a Cu-zeolite formulation and a Fe-zeolite formulation. This work describes NH₃ storage capacity measurement data as a function of aging time and temperature. Addressing one objective of the work, these data can be used in model-based control algorithms to calculate the current NH₃ storage capacity of an SCR catalyst operating in the field, based on time and temperature history. The model-based control then uses the calculated value for effective DEF control and prevention of excessive NH₃ slip. Addressing a second objective of the work, accelerated thermal aging of SCR catalysts may be achieved by elevating temperatures above normal operating temperatures.
Technical Paper

SCR Deactivation Study for OBD Applications

2012-04-16
2012-01-1076
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO₂ formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH₃) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH₃ transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Technical Paper

Demonstration of a Novel, Off Road, Diesel Combustion Concept

2016-04-05
2016-01-0728
There are numerous off-road diesel engine applications. In some applications there is more focus on metrics such as initial cost, packaging and transient response and less emphasis on fuel economy. In this paper a combustion concept is presented that may be well suited to these applications. The novel combustion concept operates in two distinct operation modes: lean operation at light engine loads and stoichiometric operation at intermediate and high engine loads. One advantage to the two mode approach is the ability to simplify the aftertreatment and reduce cost. The simplified aftertreatment system utilizes a non-catalyzed diesel particulate filter (DPF) and a relatively small lean NOx trap (LNT). Under stoichiometric operation the LNT has the ability to act as a three way catalyst (TWC) for excellent control of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx).
Technical Paper

Investigation of Urea Derived Deposits Composition in SCR Systems and Their Potential Effect on Overall PM Emissions

2016-04-05
2016-01-0989
Ideally, complete thermal decomposition of urea should produce only two products in active Selective Catalytic Reduction (SCR) systems: ammonia and carbon dioxide. In reality, urea thermal decomposition reaction includes the formation of isocyanic acid as an intermediate product. Being highly reactive, isocyanic acid can initiate the formation of larger molecular weight compounds such as cyanuric acid, biuret, melamine, ammeline, ammelide, and dicyandimide [1,2,3,4]. These compounds can be responsible for the formation of deposits on the walls of the decomposition reactor in urea SCR systems. Composition of these deposits varies with temperature exposure, and under certain conditions, can create oligomers such as melam, melem, and melon [5, 6] that are difficult to remove from exhaust systems. Deposits can affect the efficiency of the urea decomposition, and if large enough, can inhibit the exhaust flow.
Technical Paper

A Modeling Study of SCR Reaction Kinetics from Reactor Experiments

2013-04-08
2013-01-1576
In order to further characterize and optimize the performance of Selective Catalytic Reduction (SCR) aftertreatment systems used on heavy-duty diesel engines, an accurately calibrated high-fidelity multi-step global kinetic SCR model and a reduced order estimator for on-board diagnostic (OBD) and control are desirable. In this study, a Cu-zeolite SCR catalyst from a 2010 Cummins ISB engine was experimentally studied in a flow reactor using carefully designed protocols. A 2-site SCR model describing mass transfer and the SCR chemical reaction mechanisms is described in the paper. The model was calibrated to the reactor test data sets collected under temperatures from 200 to 425 °C and SCR space velocities of 60000, 90000, and 120000 hr-1. The model parameters were calibrated using an optimization code to minimize the error between measured and simulated NO, NO₂, N₂O, and NH₃ gas concentration time histories.
Technical Paper

3D-Semi 1D Coupling for a Complete Simulation of an SCR System

2013-04-08
2013-01-1575
The presented work describes how numerical modeling techniques were extended to simulate a full Selective Catalytic Reduction (SCR) NOx aftertreatement system. Besides predicting ammonia-to-NOX ratio (ANR) and uniformity index (UI) at the SCR inlet, the developed numerical model was able to predict NOx reduction and ammonia slip. To reduce the calculation time due to the complexity of the chemical process and flow field within the SCR, a semi-1D approach was developed and applied to model the SCR catalyst, which was subsequently coupled with a 3D model of the rest of the exhaust system. Droplet depletion of urea water solution (UWS) was modeled by vaporization and thermolysis techniques while ammonia generation was modeled by the thermolysis and hydrolysis method. Test data of two different SCR systems were used to calibrate the simulation results. Results obtained using the thermolysis method showed better agreement with test data compared to the vaporization method.
Technical Paper

Cost Reduction Challenges and Emission Solutions in Emerging Markets for the Automotive Industry

2013-09-24
2013-01-2441
The growth of auto sales in emerging markets provides a good opportunity for automakers. Cost is a key factor for any automaker to win in an emerging market. This paper analyzes risks and opportunities in a low cost manufacturing environment. The Chinese auto market is used as an example and three categories of risks are analyzed. A typical risk assessment for cost reduction includes the analysis of environment risks, process risks and strategic risks associated with all phases of a product life. In an emerging market, emission regulations are a rapidly-evolving environment variable, since most countries with less regulated emission codes try to catch up with the newly- developed technologies to meet sustainable growth targets. Emission regulations have a huge impact on product design, manufacturing and maintenance in the automotive industry, and hence the related cost reduction must be thoroughly analyzed during risk assessment.
Technical Paper

Multivariate Regression and Generalized Linear Model Optimization in Diesel Transient Performance Calibration

2013-10-14
2013-01-2604
With stringent emission regulations, aftertreatment systems with a Diesel Particulate Filter (DPF) and a Selective Catalytic Reduction (SCR) are required for diesel engines to meet PM and NOx emissions. The adoption of aftertreatment increases the back pressure on a typical diesel engine and makes engine calibration a complicated process, requiring thousands of steady state testing points to optimize engine performance. When configuring an engine to meet Tier IV final emission regulations in the USA or corresponding Stage IV emission regulations in Europe, this high back pressure dramatically impacts transient performance. The peak NOx, smoke and exhaust temperature during a diesel engine transient cycle, such as the Non-Road Transient Cycle (NRTC) defined by the US Environmental Protection Agency (EPA), will in turn affect the performance of the aftertreatment system and the tailpipe emissions level.
Technical Paper

The Impact of Fuel Properties on Diesel Engine Emissions and a Feasible Solution for Common Calibration

2014-09-30
2014-01-2367
Fuel properties impact the engine-out emission directly. For some geographic regions where diesel engines can meet emission regulations without aftertreatment, the change of fuel properties will lead to final tailpipe emission variation. Aftertreatment systems such as Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR) are required for diesel engines to meet stringent regulations. These regulations include off-road Tier 4 Final emission regulations in the USA or the corresponding Stage IV emission regulations in Europe. As an engine with an aftertreatment system, the change of fuel properties will also affect the system conversion efficiency and regeneration cycle. Previous research works focus on prediction of engine-out emission, and many are based on chemical reactions. Due to the complex mixing, pyrolysis and reaction process in heterogeneous combustion, it is not cost-effective to find a general model to predict emission shifting due to fuel variation.
Technical Paper

Investigation of Urea Derived Deposits Composition in SCR Systems

2016-10-17
2016-01-2327
Ideally, complete decomposition of urea should produce only two products in active Selective Catalytic Reduction (SCR) systems: ammonia and carbon dioxide. In reality, urea decomposition reaction is a two-step process that includes the formation of ammonia and isocyanic acid as intermediate products via thermolysis. Being highly reactive, isocyanic acid can initiate the formation of larger molecular weight compounds such as cyanuric acid (CYN), biuret (BIU), melamine (MEL), ammeline (AML), ammelide (AMD), and dicyandimide (DICY). These compounds can be responsible for the formation of deposits on the walls of the decomposition reactor in urea SCR systems. Composition of these deposits varies with temperature exposure, and under certain conditions can create oligomers that are difficult to remove from exhaust pipes. Deposits can affect efficiency of the urea decomposition, and if large enough, can inhibit the exhaust flow and negatively impact ammonia distribution on the SCR catalyst.
Technical Paper

Dilute Measurement of Semi-Volatile Organic Compounds (SVOC) from a Heavy-Duty Diesel Engine

2017-10-08
2017-01-2393
Semi-volatile organic compounds (SVOC) are a group of compounds in engine exhaust that either form during combustion or are part of the fuel and lubricating oil. Since these compounds occur at very low concentrations in diesel engine exhaust, the methods for sampling, handling, and analyzing these compounds are critical to obtaining good results. An improved dilute exhaust sampling method was used for sampling and analyzing SVOC in engine exhaust, and this method was performed during transient engine operation. A total of 22 different SVOC were measured using a 2012 medium-duty diesel engine. This engine was equipped with a stock diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), and a selective catalytic reduction (SCR) catalyst in series. Exhaust concentrations for SVOC were compared both with and without exhaust aftertreatment. Concentrations for the engine-out SVOC were significantly higher than with the aftertreatment present.
X