Refine Your Search


Search Results

Technical Paper

Control Strategies for a Series-Parallel Hybrid Electric Vehicle

Living in the era of rising environmental sensibility and increasing gasoline prices, the development of a new environmentally friendly generation of vehicles becomes a necessity. Hybrid electric vehicles are one means of increasing propulsion system efficiency and decreasing pollutant emissions. In this paper, the series-parallel power-split configuration for Michigan Technological University's FutureTruck is analyzed. Mathematical equations that describe the hybrid power-split transmission are derived. The vehicle's differential equations of motion are developed and the system's need for a controller is shown. The engine's brake power and brake specific fuel consumption, as a function of its speed and throttle position, are experimentally determined. A control strategy is proposed to achieve fuel efficient engine operation. The developed control strategy has been implemented in a vehicle simulation and in the test vehicle.
Technical Paper

A Heavy-Fueled Engine for Unmanned Aerial Vehicles

The growing usage of Unmanned Aerial Vehicles (UAVs) for aerial surveillance and reconnaissance in military applications calls for lightweight, reliable powerplants that burn heavy distillate fuels. While mass-produced engines exist that provide adequate power-to-weight ratio in the low power class needed for UAVs, they all use a spark-ignited combustion system that requires high octane fuels. Southwest Research Institute (SwRI) has embarked upon an internal research effort to design and demonstrate an engine that will meet the requirements of high power density, power output compatible with small unmanned aircraft, heavy-fuel combustion, reliable, durable construction, and producible design. This effort has culminated in the successful construction and operation of a demonstrator engine.
Technical Paper

The Challenges of Developing an Energy, Emissions, and Fuel Economy Test Procedure for Heavy-Duty Hybrid Electric Transit Vehicles

Over twenty prototype hybrid buses and other commercial vehicles are currently being completed and deployed. These vehicles are primarily “series” hybrid vehicles which use electric motors for primary traction while internal combustion engines, or high-speed turbine engines connected to generators, supply some portion of the electric propulsion and battery recharge energy. Hybrid-electric vehicles have an electric energy storage system on board that influences the operation of the heat engine. The storage system design and level affect the vehicle emissions, electricity consumption, and fuel economy. Existing heavy-duty emissions test procedures require that the engine be tested over a transient cycle before it can be used in vehicles (over 26,000 lbs GVW). This paper describes current test procedures for assessing engine and vehicle emissions, and proposes techniques for evaluating engines used with hybrid-electric vehicle propulsion systems.
Technical Paper

A Competition Hybrid Electric Vehicle

A series hybrid electric vehicle was constructed using a compact car chassis for the 1992 Solar and Electric 500 competition. A computer model for simulation of the vehicle and event conditions was used to determine design and race strategy. Currently available small engines were compared before selecting a V-twin, four-stroke, OHV engine for the auxiliary power unit. Chassis dynamometer, test track, and race results are compared with expected performance.
Technical Paper

Nonlinear Model Predictive Control of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

This paper studies the nonlinear model predictive control for a power-split Hybrid Electric Vehicle (HEV) power management system to improve the fuel economy. In this paper, a physics-based battery model is built and integrated with a base HEV model from Autonomie®, a powertrain and vehicle model architecture and development software from Argonne National Laboratory. The original equivalent circuit battery model from the software has been replaced by a single particle electrochemical lithium ion battery model. A predictive model that predicts the driver’s power request, the battery state of charge (SOC) and the engine fuel consumption is studied and used for the nonlinear model predictive controller (NMPC). A dedicated NMPC algorithm and its solver are developed and validated with the integrated HEV model. The performance of the NMPC algorithm is compared with that of a rule-based controller.
Technical Paper

Real Time Application of Battery State of Charge and State of Health Estimation

A high voltage battery is an essential part of hybrid electric vehicles (HEVs). It is imperative to precisely estimate the state of charge (SOC) and state of health (SOH) of battery in real time to maintain reliable vehicle operating conditions. This paper presents a method of estimating SOC and SOH through the incorporation of current integration, voltage translation, and Ah-throughput. SOC estimation utilizing current integration is inadequate due to the accumulation of errors over the period of usage. Thus voltage translation of SOC is applied to rectify current integration method which improves the accuracy of estimation. Voltage translation data is obtained by subjecting the battery to hybrid pulse power characterization (HPPC) test. The Battery State of Health was determined by semi-empirical model combined with accumulated Ah-throughput method. Battery state of charge was employed as an input to estimate damages accumulated to battery aging through a real-time model.
Technical Paper

Effect of State of Charge Constraints on Fuel Economy and Battery Aging when Using the Equivalent Consumption Minimization Strategy

Battery State of Charge (SOC) constraints are used to prevent the battery in Hybrid Electric Vehicles (HEVs) from over-charging or over-discharging. These constraints strongly influence the power-split of the HEV. This paper presents results on how Battery State of Charge (SOC) constraints effects Lithium ion battery aging and fuel economy when using the Equivalent Consumption Minimization Strategy (ECMS). The vehicle studied is the Honda Civic Hybrid. The battery used is A123 Systems’ ANR26650 battery cell. Vehicle simulation uses multiple combinations of highway and city drive cycles. For each combination of drive cycles, nine SOC constraints ranges are used. Battery aging is evaluated using a semi-empirical model combined with the accumulated Ah-throughput method which uses, as an input, the battery SOC trajectory from the vehicle simulations. The simulation results provide insight into how SOC constraints effect fuel economy as well as battery aging.
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 2: Prediction and Optimization

Today's engine and combustion process development is closely related to the intake port layout. Combustion, performance and emissions are coupled to the intensity of turbulence, the quality of mixture formation and the distribution of residual gas, all of which depend on the in-cylinder charge motion, which is mainly determined by the intake port and cylinder head design. Additionally, an increasing level of volumetric efficiency is demanded for a high power output. Most optimization efforts on typical homogeneous charge spark ignition (HCSI) engines have been at low loads because that is all that is required for a vehicle to make it through the FTP cycle. However, due to pumping losses, this is where such engines are least efficient, so it would be good to find strategies to allow the engine to operate at higher loads.
Technical Paper

Mild Regenerative Braking to Enhance Fuel Economy via Lowered Engine Load Due to Alternator

Brake energy recovery is one of the key components in today's hybrid vehicles that allows for increased fuel economy. Typically, major engineering changes are required in the drivetrain to achieve these gains. The objective of this paper is to present a concept of capturing brake energy in a mild hybrid approach without any major modifications to the drivetrain or other vehicular systems. With fuel costs rising, the additional component cost incurred in the presented concept may be recovered quickly. In today's vehicles, alternators supply the electrical power for the engine and vehicle accessories whenever the engine is running. As vehicle electrical demands increase, this load is an ever-increasing part of the engine's output, negatively impacting fuel economy. By using a regenerative device (alternator) on the drive shaft (or any other part of the power train), electrical energy can be captured during braking.
Technical Paper

Scuderi Split Cycle Engine: Air Hybrid Vehicle Powertrain Simulation Study

The Scuderi engine is a split cycle design that divides the four strokes of a conventional combustion cycle over two paired cylinders, one intake/compression cylinder and one power/exhaust cylinder, connected by a crossover port. This configuration provides potential benefits to the combustion process, as well as presenting some challenges; it also creates the possibility for pneumatic hybridization of the engine. This paper presents the methodology and results of a comprehensive study to investigate the benefits of air hybrid operation with the Scuderi Split Cycle (SSC) engine. Four air hybrid operating modes are made possible by the Split Cycle configuration, namely air compressor, air expander, air expander & firing and firing & charging. The predicted operating requirements for each individual operating mode are established. The air and fuel flow of the individual modes are fully mapped throughout the engine operating speed and load range and air tank pressure operating range.
Technical Paper

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. This paper describes such a simulation framework that can be used to predict fuel economy of series hydraulic hybrid vehicle for any specified driver demand schedule (drive cycle), developed in MATLAB/Simulink. The key components of the series hydraulic hybrid vehicle are modeled using a combination of first principles and empirical data. A simplified driver model is included to follow the specified drive cycle.
Technical Paper

Simulation of Lithium Ion HEV Battery Aging Using Electrochemical Battery Model under Different Ambient Temperature Conditions

This paper investigates the aging performance of the lithium ion cobalt oxide battery pack of a single shaft parallel hybrid electric vehicle (HEV) under different ambient temperatures. Varying ambient temperature of HEVs results in different battery temperature and then leads to different aging performance of the battery pack. Battery aging is reflected in the increasing of battery internal resistance and the decreasing of battery capacity. In this paper, a single shaft parallel hybrid electric vehicle model is built by integrating Automotive Simulation Model (ASM) from dSPACE and AutoLion-ST battery model from ECPower to realize the co-simulation of HEV powertrain in the common MATLAB/Simulink platform. The battery model is a physics-based and thermally-coupled battery (TCB) model, which enables the investigation of battery capacity degradation and aging. Standard driving cycle with differing ambient temperatures is tested using developed HEV model.
Technical Paper

A Comparative Analysis for Optimal Control of Power Split in a Fuel Cell Hybrid Electric Vehicle

Power split in Fuel Cell Hybrid Electric Vehicles (FCHEVs) has been controlled using different strategies ranging from rule-based to optimal control. Dynamic Programming (DP) and Model Predictive Control (MPC) are two common optimal control strategies used in optimization of the power split in FCHEVs with a trade-off between global optimality of the solution and online implementation of the controller. In this paper, both control strategies are developed and tested on a FC/battery vehicle model, and the results are compared in terms of total energy consumption. In addition, the effects of the MPC prediction horizon length on the controller performance are studied. Results show that by using the DP strategy, up to 12% less total energy consumption is achieved compared to MPC for a charge sustaining mode in the Urban Dynamometer Driving Schedule (UDDS) drive cycle.
Technical Paper

Cost Reduction Challenges and Emission Solutions in Emerging Markets for the Automotive Industry

The growth of auto sales in emerging markets provides a good opportunity for automakers. Cost is a key factor for any automaker to win in an emerging market. This paper analyzes risks and opportunities in a low cost manufacturing environment. The Chinese auto market is used as an example and three categories of risks are analyzed. A typical risk assessment for cost reduction includes the analysis of environment risks, process risks and strategic risks associated with all phases of a product life. In an emerging market, emission regulations are a rapidly-evolving environment variable, since most countries with less regulated emission codes try to catch up with the newly- developed technologies to meet sustainable growth targets. Emission regulations have a huge impact on product design, manufacturing and maintenance in the automotive industry, and hence the related cost reduction must be thoroughly analyzed during risk assessment.
Technical Paper

The Impact of RoHS on Electric Vehicles in the Chinese Automotive Market

China has become the world’s largest vehicle market in terms of sales volume. Automobiles sales keep growing in recent years despite the declining economic growth rate. Due to the increasing attention given to the environmental impact, more stringent emission regulations are being drafted to control traditional internal combustion engine emissions. In order to reduce vehicle emissions, environmentally-friendly new-energy vehicles, such as electric vehicles and plug-in hybrid vehicles, are being promoted by government policies. The Chinese government plans to boost sales of new-energy cars to account for about five percent of China’s total vehicle sales. It is well known that more electric and electronic components will be integrated into a vehicle platform during vehicle electrification.
Technical Paper

Analysis For A Parallel Four-Wheel Propane Electric Hybrid Vehicle

This paper analyzes the hybridization of a conventionally powered light duty front wheel drive pick up truck by adding an electric motor driven rear axle. Also studied are the effects of using propane fuel instead of gasoline. This hybrid powertrain configuration can be described as a parallel hybrid electric vehicle. Supervisory power management control has been developed to best determine the proportion of load to be provided by the engine and/or electric motor. To perform these analyses, a simulation tool (computer model of the powertrain components) was developed using MATLAB/SIMULINK'. The models account for the thermal and mechanical efficiencies of the components and are designed to develop control strategies for meeting road loads with improved fuel economy and reduced emissions. Results of this study have shown that fuel economy can be improved and emissions reduced using commercially available components (motor, rear axle, and lead acid batteries).
Technical Paper

A Parallel Hybrid Drivetrain

Next generation vehicles are under environmental and economic pressure to reduce emissions and increase fuel economy, while maintaining the same ride and performance characteristics of present day combustion engine automobiles. This has prompted researchers to investigate hybrid vehicles as one possible solution to this challenge. At Southwest Research Institute (SwRI), a unique parallel hybrid drivetrain was designed and prototyped. This hybrid drivetrain alleviates the disadvantages of series hybrid drivetrains by directly coupling the driving wheels to two power sources, namely an engine and an electric motor. At the same time, the design allows the engine speed to be decoupled from the vehicle speed, allowing the engine to operate at its most efficient state. This paper describes the drivetrain, its components, and the test stand that was assembled to test the parallel hybrid drivetrain.
Technical Paper

Development of the MTU Automatic Shifting Manual Six Speed Transmission

The purpose of this report is to describe the process for the development of the automatically shifting manual transmission control system hardware and software to be used in the MTU Challenge X Equinox, a through-the-road parallel hybrid electric vehicle. The automatically shifting manual transmission was chosen for development, as it combines the ease of use of an automatic transmission with the fuel efficiency of a manual, while eliminating the parasitic losses in the torque converter and the transmission hydraulic pump. This report illustrates the process used to develop the software-in-the loop modeling that was developed for the initial proof of concept. In addition, it describes the development of the control strategy and hardware build for the prototype transmission. To begin the design process research was preformed on existing automatically shifting manuals and manual transmissions in general. From there vehicle subsystems were assembled using Simulink block diagrams.
Technical Paper

Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV

A detailed component performance, ratings, and cost study was conducted on series and parallel hybrid electric vehicle (HEV) configurations for several battery pack and main electric traction motor voltages while meeting stringent Partnership for a New Generation of Vehicles (PNGV) power delivery requirements. A computer simulation calculated maximum current and voltage for each component as well as power and fuel consumption. These values defined the peak power ratings for each HEV drive system's electric components: batteries, battery cables, boost converter, generator, rectifier, motor, and inverter. To identify a superior configuration or voltage level, life cycle costs were calculated based on the components required to execute simulated drive schedules. These life cycle costs include the initial manufacturing cost of components, fuel cost, and battery replacement cost over the vehicle life.
Technical Paper

Design and Development of the 2002 Michigan Tech FutureTruck, a Parallel Hybrid Electric Vehicle

In this paper, the conversion of a production sport utility vehicle (SUV) to a hybrid electric vehicle utilizing a through-the-road parallel hybrid configuration is presented. The uniqueness of this design comes from its ability to decouple the front and rear drivetrain to simplify the packaging of underbody components. The Hybrid Theory utilizes a 2.0L, 4-cylinder engine that supplies 101kW (135hp) to the front wheels and a DC motor that supplies an additional 53kW (70hp) to the rear wheels to achieve the competition goals of a 25% improvement in fuel economy, a reduction in Green House Gas (GHG) emissions, as well as maintaining stock performance. The effects on drivability, manufacturing, fuel economy, emissions, and performance are presented along with the design, selection, and implementation of all of the vehicle conversion components.